-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocess.py
210 lines (194 loc) · 9.94 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# ------------------------------------------------------------------------
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------
import math
import numpy as np
from PIL import Image
import skimage.morphology as sk_morphology
def open_image(filename):
image = Image.open(filename)
return image
def pil_to_np_rgb(pil_img):
rgb = np.asarray(pil_img)
return rgb
def mask_percent(np_img):
if (len(np_img.shape) == 3) and (np_img.shape[2] == 3):
np_sum = np_img[:, :, 0] + np_img[:, :, 1] + np_img[:, :, 2]
mask_percentage = 100 - np.count_nonzero(np_sum) / np_sum.size * 100 #(np_img.shape[0]*np_img.shape[1])
else:
mask_percentage = 100 - np.count_nonzero(np_img) / np_img.size * 100
return mask_percentage
def tissue_percent(np_img):
return 100 - mask_percent(np_img)
def filter_green_channel(np_img, green_thresh=200, avoid_overmask=True, overmask_thresh=90, output_type="bool"):
g = np_img[:, :, 1]
gr_ch_mask = (g < green_thresh) & (g > 0)
mask_percentage = mask_percent(gr_ch_mask)
if (mask_percentage >= overmask_thresh) and (green_thresh < 255) and (avoid_overmask is True):
new_green_thresh = math.ceil((255 - green_thresh) / 2 + green_thresh)
print("Mask percentage %3.2f%% >= overmask threshold %3.2f%% for Remove Green Channel green_thresh=%d, so try %d" % (
mask_percentage, overmask_thresh, green_thresh, new_green_thresh))
gr_ch_mask = filter_green_channel(np_img, new_green_thresh, avoid_overmask, overmask_thresh, output_type)
np_img = gr_ch_mask
if output_type == "bool":
pass
elif output_type == "float":
np_img = np_img.astype(float)
else:
np_img = np_img.astype("uint8") * 255
return np_img
def filter_grays(rgb, tolerance=15, output_type="bool"):
(h, w, c) = rgb.shape
rgb = rgb.astype(np.int)
rg_diff = abs(rgb[:, :, 0] - rgb[:, :, 1]) <= tolerance
rb_diff = abs(rgb[:, :, 0] - rgb[:, :, 2]) <= tolerance
gb_diff = abs(rgb[:, :, 1] - rgb[:, :, 2]) <= tolerance
result = ~(rg_diff & rb_diff & gb_diff)
if output_type == "bool":
pass
elif output_type == "float":
result = result.astype(float)
else:
result = result.astype("uint8") * 255
return result
def filter_red(rgb, red_lower_thresh, green_upper_thresh, blue_upper_thresh, output_type="bool"):
r = rgb[:, :, 0] > red_lower_thresh
g = rgb[:, :, 1] < green_upper_thresh
b = rgb[:, :, 2] < blue_upper_thresh
result = ~(r & g & b)
if output_type == "bool":
pass
elif output_type == "float":
result = result.astype(float)
else:
result = result.astype("uint8") * 255
return result
def filter_red_pen(rgb, output_type="bool"):
result = filter_red(rgb, red_lower_thresh=150, green_upper_thresh=80, blue_upper_thresh=90) & \
filter_red(rgb, red_lower_thresh=110, green_upper_thresh=20, blue_upper_thresh=30) & \
filter_red(rgb, red_lower_thresh=185, green_upper_thresh=65, blue_upper_thresh=105) & \
filter_red(rgb, red_lower_thresh=195, green_upper_thresh=85, blue_upper_thresh=125) & \
filter_red(rgb, red_lower_thresh=220, green_upper_thresh=115, blue_upper_thresh=145) & \
filter_red(rgb, red_lower_thresh=125, green_upper_thresh=40, blue_upper_thresh=70) & \
filter_red(rgb, red_lower_thresh=200, green_upper_thresh=120, blue_upper_thresh=150) & \
filter_red(rgb, red_lower_thresh=100, green_upper_thresh=50, blue_upper_thresh=65) & \
filter_red(rgb, red_lower_thresh=85, green_upper_thresh=25, blue_upper_thresh=45)
if output_type == "bool":
pass
elif output_type == "float":
result = result.astype(float)
else:
result = result.astype("uint8") * 255
return result
def filter_green(rgb, red_upper_thresh, green_lower_thresh, blue_lower_thresh, output_type="bool"):
r = rgb[:, :, 0] < red_upper_thresh
g = rgb[:, :, 1] > green_lower_thresh
b = rgb[:, :, 2] > blue_lower_thresh
result = ~(r & g & b)
if output_type == "bool":
pass
elif output_type == "float":
result = result.astype(float)
else:
result = result.astype("uint8") * 255
return result
def filter_green_pen(rgb, output_type="bool"):
result = filter_green(rgb, red_upper_thresh=150, green_lower_thresh=160, blue_lower_thresh=140) & \
filter_green(rgb, red_upper_thresh=70, green_lower_thresh=110, blue_lower_thresh=110) & \
filter_green(rgb, red_upper_thresh=45, green_lower_thresh=115, blue_lower_thresh=100) & \
filter_green(rgb, red_upper_thresh=30, green_lower_thresh=75, blue_lower_thresh=60) & \
filter_green(rgb, red_upper_thresh=195, green_lower_thresh=220, blue_lower_thresh=210) & \
filter_green(rgb, red_upper_thresh=225, green_lower_thresh=230, blue_lower_thresh=225) & \
filter_green(rgb, red_upper_thresh=170, green_lower_thresh=210, blue_lower_thresh=200) & \
filter_green(rgb, red_upper_thresh=20, green_lower_thresh=30, blue_lower_thresh=20) & \
filter_green(rgb, red_upper_thresh=50, green_lower_thresh=60, blue_lower_thresh=40) & \
filter_green(rgb, red_upper_thresh=30, green_lower_thresh=50, blue_lower_thresh=35) & \
filter_green(rgb, red_upper_thresh=65, green_lower_thresh=70, blue_lower_thresh=60) & \
filter_green(rgb, red_upper_thresh=100, green_lower_thresh=110, blue_lower_thresh=105) & \
filter_green(rgb, red_upper_thresh=165, green_lower_thresh=180, blue_lower_thresh=180) & \
filter_green(rgb, red_upper_thresh=140, green_lower_thresh=140, blue_lower_thresh=150) & \
filter_green(rgb, red_upper_thresh=185, green_lower_thresh=195, blue_lower_thresh=195)
if output_type == "bool":
pass
elif output_type == "float":
result = result.astype(float)
else:
result = result.astype("uint8") * 255
return result
def filter_blue(rgb, red_upper_thresh, green_upper_thresh, blue_lower_thresh, output_type="bool"):
r = rgb[:, :, 0] < red_upper_thresh
g = rgb[:, :, 1] < green_upper_thresh
b = rgb[:, :, 2] > blue_lower_thresh
result = ~(r & g & b)
if output_type == "bool":
pass
elif output_type == "float":
result = result.astype(float)
else:
result = result.astype("uint8") * 255
return result
def filter_blue_pen(rgb, output_type="bool"):
result = filter_blue(rgb, red_upper_thresh=60, green_upper_thresh=120, blue_lower_thresh=190) & \
filter_blue(rgb, red_upper_thresh=120, green_upper_thresh=170, blue_lower_thresh=200) & \
filter_blue(rgb, red_upper_thresh=175, green_upper_thresh=210, blue_lower_thresh=230) & \
filter_blue(rgb, red_upper_thresh=145, green_upper_thresh=180, blue_lower_thresh=210) & \
filter_blue(rgb, red_upper_thresh=37, green_upper_thresh=95, blue_lower_thresh=160) & \
filter_blue(rgb, red_upper_thresh=30, green_upper_thresh=65, blue_lower_thresh=130) & \
filter_blue(rgb, red_upper_thresh=130, green_upper_thresh=155, blue_lower_thresh=180) & \
filter_blue(rgb, red_upper_thresh=40, green_upper_thresh=35, blue_lower_thresh=85) & \
filter_blue(rgb, red_upper_thresh=30, green_upper_thresh=20, blue_lower_thresh=65) & \
filter_blue(rgb, red_upper_thresh=90, green_upper_thresh=90, blue_lower_thresh=140) & \
filter_blue(rgb, red_upper_thresh=60, green_upper_thresh=60, blue_lower_thresh=120) & \
filter_blue(rgb, red_upper_thresh=110, green_upper_thresh=110, blue_lower_thresh=175)
if output_type == "bool":
pass
elif output_type == "float":
result = result.astype(float)
else:
result = result.astype("uint8") * 255
return result
def filter_remove_small_objects(np_img, min_size=500, avoid_overmask=True, overmask_thresh=95, output_type="uint8"):
rem_sm = np_img.astype(bool) # make sure mask is boolean
rem_sm = sk_morphology.remove_small_objects(rem_sm, min_size=min_size)
mask_percentage = mask_percent(rem_sm)
if (mask_percentage >= overmask_thresh) and (min_size >= 1) and (avoid_overmask is True):
new_min_size = min_size / 2
print("Mask percentage %3.2f%% >= overmask threshold %3.2f%% for Remove Small Objs size %d, so try %d" % (
mask_percentage, overmask_thresh, min_size, new_min_size))
rem_sm = filter_remove_small_objects(np_img, new_min_size, avoid_overmask, overmask_thresh, output_type)
np_img = rem_sm
if output_type == "bool":
pass
elif output_type == "float":
np_img = np_img.astype(float)
else:
np_img = np_img.astype("uint8") * 255
return np_img
def mask_rgb(rgb, mask):
result = rgb * np.dstack([mask, mask, mask])
return result
def apply_image_filters(np_img):
rgb = np_img
mask_not_green = filter_green_channel(rgb)
mask_not_gray = filter_grays(rgb)
mask_no_red_pen = filter_red_pen(rgb)
mask_no_green_pen = filter_green_pen(rgb)
rgb_no_green_pen = mask_rgb(rgb, mask_no_green_pen)
mask_no_blue_pen = filter_blue_pen(rgb)
mask_gray_green_pens = mask_not_gray & mask_not_green & mask_no_red_pen & mask_no_green_pen & mask_no_blue_pen
mask_remove_small = filter_remove_small_objects(mask_gray_green_pens, min_size=500, output_type="bool")
rgb_remove_small = mask_rgb(rgb, mask_remove_small)
img = rgb_remove_small
return img