Skip to content

【PyTorch】Easy-to-use package of April: Adaptive Process-Guided Learning

License

Notifications You must be signed in to change notification settings

RunlongYu/April

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Process-Guided Learning: An Application in Predicting Lake DO Concentrations

This repository is the official implementation for the ICDM 2024 Paper titled, Adaptive Process-Guided Learning: An Application in Predicting Lake DO Concentrations.

''

Python environment

conda env create -f april.yml

Usage

(I) Data preprocessing

cd src/data
python3 main.py

(II) Train April

Tips: Before training April, we recommend downloading the pretrained discriminator model from this Google Drive link to achieve consistent results similar to ours. After downloading the discriminator models, please follow the steps in Section IV to generate data and Section VI for data preprocessing for April.

1. Pre-training stage

Shell script:

cd src/shell

./shell_pretrain_april.sh

Python script example:

cd src/train

python3 pretrain_main.py --model_type april --cluster_id 1 --model_index 1
Argument Type Default Description Choices
--model_type str 'lstm' The model to be used. 'lstm', 'pril', 'april', 'ea_lstm', 'transformer'
--gpu int 0 GPU device ID to be used.
--model_index int 1 Model index which maps to a random seed. 1,2,3
--cluster_id int 1 Cluster Id 1,2,3,4

2. Fine tuning stage

Shell script

cd src/shell

./shell_finetune_april.sh

Python script example:

cd src/train

python3 pretrain_main.py --model_type april --cluster_id 1 --model_index 1
Argument Type Default Description Choices
--model_type str 'lstm' The model to be used. 'lstm', 'pril', 'april', 'ea_lstm', 'transformer'
--gpu int 0 GPU device ID to be used.
--model_index int 1 Model index which maps to a random seed. 1,2,3
--cluster_id int 1 Cluster Id 1,2,3,4

(III) Train Pril

1. Pre-training stage

Shell script:

cd src/shell

./shell_pretrain_pril.sh

Python script example:

cd src/train

python3 pretrain_main.py --model_type pril --cluster_id 1 --model_index 1

2. Fine tuning stage

Shell script

cd src/shell

./shell_finetune_pril.sh

Python script example:

cd src/train

python3 finetune_main.py --model_type april --cluster_id 1 --model_index 1

(IV) Train discriminator model

Load existing discriminator models and generate data:

cd src/shell

./shell_use_dnn.sh

Retrain discriminator models and generate data:

cd src/shell

./shell_train_dnn.sh

example:

python3 train_DNN_all_lakes.py --model_index 1 --cluster_id 1 --TrainDNN 0
Argument Type Default Description Choices
--gpu int 0 GPU device ID to be used.
--model_index int 1 Model index which maps to a random seed. 1, 2, 3
--cluster_id int 1 Cluster Id 1, 2, 3, 4
--TrainDNN int 1 Set to 1 to retrain the discriminator model and generate data; set to 0 to load existing discriminator models and generate data. 0, 1

(V) Data preprocessing for April

cd src/data

python3 preprocess_extend.py

Directory Descriptions

Project Directory/
│
├── data/                   # Datasets storage
│
├── model/                  # Contains the April model and baseline architectures with related files
│
├── src/                    # Source code
│   ├── config/             # Configuration files (hyperparameters, environment variables, settings)
│   ├── data/               # Data preprocessing and loading functions
│   ├── draw_pics/          # Functions to generate visualizations
│   ├── evaluate/           # Model evaluation functions
│   ├── geo_map/            # Functions to generate geographical maps
│   ├── models/             # Model-related functions
│   ├── shell/              # Shell scripts
│   ├── train/              # Model training scripts
│   ├── utils/              # Utility functions
│
├── april.yml               # Environment configuration file for this project
│
└── README.md               # Project documentation

Contact

Should you have any questions regarding our paper or codes, please don't hesitate to reach out via email at chq29@pitt.edu or ruy59@pitt.edu.

Acknowledgment

Our code is developed based on GitHub - jdwillard19/MTL_lakes-Torch: Meta Transfer Learning for Lake Temperature Prediction.

About

【PyTorch】Easy-to-use package of April: Adaptive Process-Guided Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 79.0%
  • Python 20.5%
  • Shell 0.5%