This repository is the official implementation for the ICDM 2024 Paper titled, Adaptive Process-Guided Learning: An Application in Predicting Lake DO Concentrations.
conda env create -f april.yml
cd src/data
python3 main.py
Tips: Before training April, we recommend downloading the pretrained discriminator model from this Google Drive link to achieve consistent results similar to ours. After downloading the discriminator models, please follow the steps in Section IV to generate data and Section VI for data preprocessing for April.
Shell script:
cd src/shell
./shell_pretrain_april.sh
Python script example:
cd src/train
python3 pretrain_main.py --model_type april --cluster_id 1 --model_index 1
Argument | Type | Default | Description | Choices |
---|---|---|---|---|
--model_type |
str | 'lstm' | The model to be used. | 'lstm', 'pril', 'april', 'ea_lstm', 'transformer' |
--gpu |
int | 0 | GPU device ID to be used. | |
--model_index |
int | 1 | Model index which maps to a random seed. | 1,2,3 |
--cluster_id |
int | 1 | Cluster Id | 1,2,3,4 |
Shell script
cd src/shell
./shell_finetune_april.sh
Python script example:
cd src/train
python3 pretrain_main.py --model_type april --cluster_id 1 --model_index 1
Argument | Type | Default | Description | Choices |
---|---|---|---|---|
--model_type |
str | 'lstm' | The model to be used. | 'lstm', 'pril', 'april', 'ea_lstm', 'transformer' |
--gpu |
int | 0 | GPU device ID to be used. | |
--model_index |
int | 1 | Model index which maps to a random seed. | 1,2,3 |
--cluster_id |
int | 1 | Cluster Id | 1,2,3,4 |
Shell script:
cd src/shell
./shell_pretrain_pril.sh
Python script example:
cd src/train
python3 pretrain_main.py --model_type pril --cluster_id 1 --model_index 1
Shell script
cd src/shell
./shell_finetune_pril.sh
Python script example:
cd src/train
python3 finetune_main.py --model_type april --cluster_id 1 --model_index 1
Load existing discriminator models and generate data:
cd src/shell
./shell_use_dnn.sh
Retrain discriminator models and generate data:
cd src/shell
./shell_train_dnn.sh
example:
python3 train_DNN_all_lakes.py --model_index 1 --cluster_id 1 --TrainDNN 0
Argument | Type | Default | Description | Choices |
---|---|---|---|---|
--gpu |
int | 0 | GPU device ID to be used. | |
--model_index |
int | 1 | Model index which maps to a random seed. | 1, 2, 3 |
--cluster_id |
int | 1 | Cluster Id | 1, 2, 3, 4 |
--TrainDNN |
int | 1 | Set to 1 to retrain the discriminator model and generate data; set to 0 to load existing discriminator models and generate data. | 0, 1 |
cd src/data
python3 preprocess_extend.py
Project Directory/
│
├── data/ # Datasets storage
│
├── model/ # Contains the April model and baseline architectures with related files
│
├── src/ # Source code
│ ├── config/ # Configuration files (hyperparameters, environment variables, settings)
│ ├── data/ # Data preprocessing and loading functions
│ ├── draw_pics/ # Functions to generate visualizations
│ ├── evaluate/ # Model evaluation functions
│ ├── geo_map/ # Functions to generate geographical maps
│ ├── models/ # Model-related functions
│ ├── shell/ # Shell scripts
│ ├── train/ # Model training scripts
│ ├── utils/ # Utility functions
│
├── april.yml # Environment configuration file for this project
│
└── README.md # Project documentation
Should you have any questions regarding our paper or codes, please don't hesitate to reach out via email at chq29@pitt.edu or ruy59@pitt.edu.
Our code is developed based on GitHub - jdwillard19/MTL_lakes-Torch: Meta Transfer Learning for Lake Temperature Prediction.