-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassification_model.py
138 lines (101 loc) · 5.43 KB
/
classification_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import lightning.pytorch as pl
import torch.nn as nn
import torch
from lightning.pytorch.utilities import grad_norm
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryRecall, BinaryPrecision, BinaryF1Score
from torchmetrics import MetricCollection
from hicdiffusion_encoder_decoder_model import HiCDiffusionEncoderDecoder
def normalize(A):
A = A.view(-1, 256, 256)
outmap_min, _ = torch.min(A, dim=1, keepdim=True)
outmap_max, _ = torch.max(A, dim=1, keepdim=True)
outmap = (A - outmap_min) / (outmap_max - outmap_min)
return outmap.view(-1, 1, 256, 256)
def ptp(input):
return input.max() - input.min()
size_img = 256
eps = 1e-7
class ResidualConv1d(nn.Module):
def __init__(self, hidden_in, hidden_out, kernel, padding):
super(ResidualConv1d, self).__init__()
self.main = nn.Sequential(
nn.Conv1d(hidden_in, hidden_out, kernel, padding=padding),
nn.BatchNorm1d(hidden_out),
nn.ReLU(),
nn.Conv1d(hidden_out, hidden_out, kernel, padding=padding),
nn.BatchNorm1d(hidden_out),
nn.MaxPool1d(2)
)
self.downscale = nn.Sequential(nn.Conv1d(hidden_in, hidden_out, kernel, padding=padding),
nn.MaxPool1d(2))
self.relu = nn.ReLU()
def forward(self, x):
residual = self.downscale(x)
output = self.main(x)
return self.relu(output+residual)
class ResidualConv2d(nn.Module):
def __init__(self, hidden_in, hidden_out, kernel, padding, dilation):
super(ResidualConv2d, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(hidden_in, hidden_out, kernel, padding=padding, dilation=dilation),
nn.BatchNorm2d(hidden_out),
nn.ReLU(),
nn.Conv2d(hidden_out, hidden_out, kernel, padding=padding, dilation=dilation),
nn.BatchNorm2d(hidden_out)
)
self.relu = nn.ReLU()
self.downscale = nn.Sequential(nn.Conv2d(hidden_in, hidden_out, kernel, padding=padding))
def forward(self, x):
residual = self.downscale(x)
output = self.main(x)
return self.relu(output+residual)
class ClassificationModel(pl.LightningModule):
def __init__(self, encoder_decoder_model, val_chr, test_chr):
super().__init__()
self.val_chr = val_chr
self.test_chr = test_chr
self.save_hyperparameters()
self.encoder_decoder = HiCDiffusionEncoderDecoder.load_from_checkpoint(encoder_decoder_model)
self.encoder_decoder.freeze()
self.encoder_decoder.eval()
metrics = MetricCollection([ BinaryAccuracy(), BinaryAUROC(), BinaryRecall(), BinaryPrecision(), BinaryF1Score()
])
self.train_metrics = metrics.clone(prefix='train_')
self.valid_metrics = metrics.clone(prefix='val_')
self.convs = nn.Sequential(ResidualConv2d(512, 256, 3, 1, 1), ResidualConv2d(256, 128, 3, 1, 1), ResidualConv2d(128, 64, 3, 1, 1), ResidualConv2d(64, 32, 3, 1, 1), ResidualConv2d(32, 16, 3, 1, 1), ResidualConv2d(16, 8, 3, 1, 1), ResidualConv2d(8, 1, 3, 1, 1))
#self.convs = nn.Sequential(ResidualConv1d(256, 128, 3, 1), ResidualConv1d(128, 64, 3, 1), ResidualConv1d(64, 32, 3, 1), ResidualConv1d(32, 16, 3, 1), ResidualConv1d(16, 8, 3, 1), ResidualConv1d(8, 1, 3, 1))
self.fcs = nn.Sequential(nn.BatchNorm1d(256*256), nn.Dropout(0.4), nn.Linear(256*256, 200), nn.ReLU(), nn.Linear(200, 20))
def forward(self, x):
y_cond = self.encoder_decoder.encoder(x)
y_cond = self.encoder_decoder.decoder(y_cond)
y = self.convs(y_cond)
y = y.reshape(-1, 256*256)
y = self.fcs(y)
return y
def training_step(self, batch, batch_idx):
x, y, pos = batch
y_pred = self(x)
loss = torch.nn.BCEWithLogitsLoss()
self.log("train_loss", loss(y_pred, y), on_epoch=True, prog_bar=True, batch_size=x.shape[0], sync_dist=True)
self.log_dict(self.train_metrics(y_pred, y), on_epoch=True, sync_dist=True, batch_size=x.shape[0])
return loss(y_pred, y)
def on_train_epoch_end(self):
print('\n')
def validation_step(self, batch, batch_idx):
x, y, pos = batch
y_pred = self(x)
loss = torch.nn.BCEWithLogitsLoss()
self.log("val_loss", loss(y_pred, y), on_epoch=True, prog_bar=True, batch_size=x.shape[0], sync_dist=True)
self.log_dict(self.valid_metrics(y_pred, y), on_epoch=True, sync_dist=True, batch_size=x.shape[0])
def test_step(self, batch, batch_idx):
x, y, pos = batch
y_pred = self(x)
loss = torch.nn.BCEWithLogitsLoss()
self.log("val_loss", loss(y_pred, y), on_epoch=True, prog_bar=True, batch_size=x.shape[0], sync_dist=True)
self.log_dict(self.valid_metrics(y_pred, y), on_epoch=True, sync_dist=True, batch_size=x.shape[0])
def predict_step(self, batch, batch_idx, dataloader_idx=0):
x, y, pos = batch
y_pred = self(x)
return y_pred
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.00001)