-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathengine.py
80 lines (69 loc) · 3.52 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# VMFormer Train and eval functions used in main.py
# ------------------------------------------------------------------------
# Modified from SeqFormer (https://github.com/wjf5203/SeqFormer)
# Copyright (c) 2021 Junfeng Wu. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import math
import os
import sys
from typing import Iterable
import cv2
import numpy as np
import json
import copy
import torch
import util.misc as utils
from util.misc import NestedTensor
from datasets.data_prefetcher import data_prefetcher
from PIL import Image, ImageDraw
from scipy.optimize import linear_sum_assignment
def train_one_epoch_vm(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, rank_num: int, max_norm: float = 0):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('grad_norm', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 100
prefetcher = data_prefetcher(data_loader, device, prefetch=True)
samples, targets = prefetcher.next()
for _ in metric_logger.log_every(range(len(data_loader)), print_freq, header):
outputs, loss_dict = model(samples, targets, criterion, train=True)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
else:
grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
optimizer.step()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(grad_norm=grad_total_norm)
samples, targets = prefetcher.next()
torch.cuda.empty_cache()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}