-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbase_model.py
108 lines (91 loc) · 3.78 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""
Bilinear Attention Networks
Jin-Hwa Kim, Jaehyun Jun, Byoung-Tak Zhang
https://arxiv.org/abs/1805.07932
This code is written by Jin-Hwa Kim.
"""
import torch.nn as nn
from pytorch_pretrained_bert.modeling import BertModel
from attention import BiAttention
from language_model import RnnQuestionEmbedding, BertRnnQuestionEmbedding
from classifier import SimpleClassifier
from fc import FCNet
from bc import BCNet
from counting import Counter
class BanModel(nn.Module):
def __init__(self, dataset, q_emb, v_att, b_net, q_prj, c_prj, classifiers, counter, op, glimpse):
super(BanModel, self).__init__()
self.dataset = dataset
self.op = op
self.glimpse = glimpse
self.q_emb = q_emb
self.v_att = v_att
self.b_net = nn.ModuleList(b_net)
self.q_prj = nn.ModuleList(q_prj)
self.c_prj = nn.ModuleList(c_prj)
self.classifiers = nn.ModuleList(classifiers)
self.counter = counter
self.drop = nn.Dropout(.5)
self.tanh = nn.Tanh()
def forward(self, v, b, q, labels, confidence, img=None):
"""Forward
v: [batch, num_objs, obj_dim]
b: [batch, num_objs, b_dim]
q: [batch_size, seq_length]
return: logits, not probs
"""
if isinstance(self.q_emb, BertModel):
q_emb, sentence_embedding = self.q_emb(q, output_all_encoded_layers=False) # [batch, q_len, q_dim]
else:
q_emb = self.q_emb(q)
boxes = b[:, :, :4].transpose(1, 2)
b_emb = [0] * self.glimpse
att, logits = self.v_att.forward_all(v, q_emb) # b x g x v x q
for g in range(self.glimpse):
b_emb[g] = self.b_net[g].forward_with_weights(v, q_emb, att[:, g, :, :]) # b x l x h
atten, _ = logits[:, g, :, :].max(2)
embed = self.counter(boxes, atten)
q_emb = self.q_prj[g](b_emb[g].unsqueeze(1)) + q_emb
q_emb = q_emb + self.c_prj[g](embed).unsqueeze(1)
logits = self.classifiers[0](q_emb.sum(1))
logitz = self.classifiers[1](q_emb.sum(1))
return logits, logitz, att
def build_ban(dataset, num_hid, op='', gamma=4, q_emb_type='bert', on_do_q=False, finetune_q=False):
if 'bert' in q_emb_type:
q_emb = BertModel.from_pretrained('bert-base-multilingual-cased')
q_dim = 768
elif 'rg' in q_emb_type:
w_dim = 100
q_dim = num_hid
q_emb = RnnQuestionEmbedding(dataset.dictionary.ntoken, w_dim, q_dim, op)
elif 'pkb' in q_emb_type:
w_dim = 200
q_dim = num_hid
q_emb = RnnQuestionEmbedding(dataset.dictionary.ntoken, w_dim, q_dim, op)
if 'bertrnn' in q_emb_type:
q_emb = BertRnnQuestionEmbedding(q_emb, 200, num_hid, op)
q_dim = num_hid
if not finetune_q: # Freeze question embedding
if isinstance(q_emb, BertModel):
for p in q_emb.parameters():
p.requires_grad_(False)
else:
for p in q_emb.w_emb.parameters():
p.requires_grad_(False)
if not on_do_q: # Remove dropout of question embedding
for m in q_emb.modules():
if isinstance(m, nn.Dropout):
m.p = 0.
v_att = BiAttention(dataset.v_dim, q_dim, num_hid, gamma)
b_net = []
q_prj = []
c_prj = []
objects = 10 # minimum number of boxes
for i in range(gamma):
b_net.append(BCNet(dataset.v_dim, q_dim, num_hid, None, k=1))
q_prj.append(FCNet([num_hid, q_dim], '', .2))
c_prj.append(FCNet([objects + 1, q_dim], 'ReLU', .0))
classifiers = [SimpleClassifier(q_dim, num_hid * 2, dataset.num_ans_candidates, .5),
SimpleClassifier(q_dim, num_hid * 2, 1, .5)]
counter = Counter(objects)
return BanModel(dataset, q_emb, v_att, b_net, q_prj, c_prj, classifiers, counter, op, gamma)