-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearners.py
443 lines (401 loc) · 17.4 KB
/
learners.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import joblib as jl
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn import svm
from sklearn.decomposition import PCA
from sklearn.cluster import DBSCAN
from sklearn.neighbors import KNeighborsClassifier, KDTree
from sklearn.metrics.pairwise import cosine_similarity
import logging
from os.path import basename, isfile, join, split
from os import listdir, remove
# import graphviz
import numpy
class PhenomeLearners(object):
def __init__(self, setting):
self._setting = setting
@property
def min_sample_size(self):
return self._setting['min_sample_size']
@staticmethod
def decision_tree_learning(self, X, Y, lm, output_file=None, pca_dim=None, pca_file=None, tree_viz_file=None,
lbl='united', min_sample_size=25):
if len(X) <= min_sample_size:
logging.warning('not enough data found for prediction: %s' % lm.label)
if isfile(output_file):
remove(output_file)
return
pca = None
if pca_dim is not None:
pca = PCA(n_components=pca_dim)
X_new = pca.fit_transform(X)
else:
X_new = X
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_new, Y)
if output_file is not None:
jl.dump(clf, output_file)
logging.info('model file saved to %s' % output_file)
if pca is not None and pca_file is not None:
jl.dump(pca, pca_file)
if tree_viz_file is not None:
label_feature_names = []
if lm.use_one_dimension_for_label:
label_feature_names.append('label')
else:
for l in lm.label_dimensions:
if l.upper() in lm.cui2label:
label_feature_names.append('lbl: ' + lm.cui2label[l.upper()])
else:
label_feature_names.append('lbl: ' + l.upper())
dot_data = tree.export_graphviz(clf, out_file=None,
filled=True, rounded=True,
feature_names=label_feature_names +
[(str(lm.cui2label[
l.upper()]) + '(' + l.upper() + ')') if l.upper() in lm.cui2label else l
for l in lm.context_dimensions(lbl)],
class_names=['Yes', 'No'],
special_characters=True)
graph = graphviz.Source(dot_data)
graph.render(tree_viz_file)
@staticmethod
def random_forest_learning(X, Y, output_file=None):
if len(X) == 0:
logging.warning('no data found for prediction')
return
clf = RandomForestClassifier()
clf = clf.fit(X, Y)
if output_file is not None:
jl.dump(clf, output_file)
logging.info('model file saved to %s' % output_file)
@staticmethod
def svm_learning(X, Y, output_file=None):
if len(X) == 0:
logging.info('no data found for prediction')
return
v = -1
all_same = True
for y in Y:
if v == -1:
v = y[0]
if v != y[0]:
all_same = False
break
if all_same:
logging.warning('all same labels %s' % Y)
return
clf = svm.SVC(kernel='sigmoid')
clf = clf.fit(X, Y)
if output_file is not None:
jl.dump(clf, output_file)
logging.info('model file saved to %s' % output_file)
@staticmethod
def gpc_learning(X, Y, output_file=None):
gpc = GaussianProcessClassifier().fit(X, Y)
if output_file is not None:
jl.dump(gpc, output_file)
logging.info('model file saved to %s' % output_file)
@staticmethod
def gaussian_nb(X, Y, output_file=None):
gnb = GaussianNB().fit(X, Y)
if output_file is not None:
jl.dump(gnb, output_file)
logging.info('model file saved to %s' % output_file)
@staticmethod
def cluster(X, Y, output_file=None):
dbm = DBSCAN(eps=.50).fit(X)
cls2label = {}
for idx in range(len(dbm.labels_)):
c = dbm.labels_[idx]
cls = 'cls%s' % c
if cls not in cls2label:
cls2label[cls] = {'t': 0, 'f': 0}
if Y[idx] == [0]:
cls2label[cls]['f'] += 1
else:
cls2label[cls]['t'] += 1
logging.info(cls2label)
kdt = KDTree(X)
if output_file is not None:
jl.dump({'dbm': dbm, 'X': X, 'Y': Y, 'kdt': kdt, 'cls2label': cls2label}, output_file)
logging.info('complex model file saved to %s' % output_file)
@staticmethod
def cluster_predict(X, Y, fns, multiple_tps, model_file, performance,
separate_performance=None, min_sample_size=25):
all_true = False
if not isfile(model_file):
logging.info('model file NOT FOUND: %s' % model_file)
all_true = True
else:
m = jl.load(model_file)
dbm = m['dbm']
kdt = m['kdt']
P = m.predict(X)
if fns > 0:
logging.debug('missed instances: %s' % fns)
performance.increase_false_negative(fns)
if multiple_tps > 0:
performance.increase_true_positive(multiple_tps)
if all_true or len(X) <= min_sample_size:
logging.warn('using querying instead of predicting')
P = numpy.ones(len(X))
else:
logging.info('instance size %s' % len(P))
for idx in range(len(P)):
LabelPerformance.evaluate_to_performance(P[idx], Y[idx], [performance, separate_performance])
@staticmethod
def knn_classify(X, Y, output_file=None):
knn = KNeighborsClassifier(n_neighbors=2).fit(X, Y)
if output_file is not None:
jl.dump(knn, output_file)
logging.info('model file saved to %s' % output_file)
@staticmethod
def predict_use_simple_stats(tp_ratio, Y, multiple_tps, performance, ratio_cut_off=0.15, separate_performance=None,
id2conll=None, doc_anns=None, file_pattern=None, doc_folder=None,
label_whitelist=None, mp_predicted=None):
P = numpy.ones(len(Y)) if tp_ratio >= ratio_cut_off else numpy.zeros(len(Y))
P = PhenomeLearners.merge_with_pattern_prediction(P, mp_predicted)
if multiple_tps > 0:
performance.increase_true_positive(multiple_tps)
if separate_performance is not None:
separate_performance.increase_true_positive(multiple_tps)
PhenomeLearners.cal_performance(P, Y, performance, separate_performance,
id2conll=id2conll, doc_anns=doc_anns, file_pattern=file_pattern,
doc_folder=doc_folder,
label_whitelist=label_whitelist)
@staticmethod
def merge_with_pattern_prediction(y_pred, mp_predict, pred_prob=False, threshold=0.5):
if mp_predict is None:
return y_pred
y_merged = []
print('>>>', y_pred, mp_predict)
for idx in range(len(y_pred)):
y_merged.append(y_pred[idx])
pred_true = (y_pred[idx] == 1)
if pred_prob:
pred_true = (y_pred[idx] >= threshold)
if pred_true and mp_predict[idx] == 0:
y_merged[idx] = 0
return y_merged
@staticmethod
def predict_use_simple_stats_in_action(tp_ratio, item_size, ratio_cut_off=0.15,
doc2predicted=None, doc_anns=None, mp_predicted=None,
keep_predict_prob=False):
P = numpy.ones(item_size) if tp_ratio >= ratio_cut_off else numpy.zeros(item_size)
P = PhenomeLearners.merge_with_pattern_prediction(P, mp_predicted)
PhenomeLearners.collect_prediction(P, doc2predicted=doc2predicted, doc_anns=doc_anns,
keep_predict_prob=keep_predict_prob)
@staticmethod
def cal_performance(P, Y, performance, separate_performance=None,
id2conll=None, doc_anns=None, file_pattern=None, doc_folder=None, label_whitelist=None):
P = numpy.asarray(P).flatten().tolist()
Y = numpy.asarray(Y).flatten().tolist()
doc2predicted = {}
for idx in range(len(P)):
LabelPerformance.evaluate_to_performance(P[idx], Y[idx], [performance, separate_performance])
if P[idx] == 1.0 and id2conll is not None and doc_anns is not None and doc_folder is not None:
PhenomeLearners.collect_prediction(P, doc_anns, doc2predicted)
# comment the following out to skip conll outputs
# for d in doc2predicted:
# if d not in id2conll:
# id2conll[d] = ConllDoc(join(doc_folder, file_pattern % d))
# if label_whitelist is not None:
# id2conll[d].set_label_white_list(label_whitelist)
# cnll = id2conll[d]
# for anns in doc2predicted[d]:
# cnll.add_predicted_labels(anns)
@staticmethod
def predict_use_model(X, Y, fns, multiple_tps, model_file, performance,
pca_model_file=None, separate_performance=None,
id2conll=None, doc_anns=None, file_pattern=None, doc_folder=None,
label_whitelist=None, mp_predicted=None):
all_true = False
if not isfile(model_file):
logging.info('model file NOT FOUND: %s' % model_file)
all_true = True
else:
if pca_model_file is not None:
pca = jl.load(pca_model_file)
X_new = pca.transform(X)
else:
X_new = X
m = jl.load(model_file)
P = m.predict(X_new)
if fns > 0:
logging.debug('missed instances: %s' % fns)
performance.increase_false_negative(fns)
if multiple_tps > 0:
performance.increase_true_positive(multiple_tps)
if separate_performance is not None:
separate_performance.increase_true_positive(multiple_tps)
if all_true: # or len(X) <= _min_sample_size:
logging.warning('using querying instead of predicting')
P = numpy.ones(len(X))
else:
logging.info('instance size %s' % len(P))
P = PhenomeLearners.merge_with_pattern_prediction(P, mp_predicted)
PhenomeLearners.cal_performance(P, Y, performance, separate_performance,
id2conll=id2conll, doc_anns=doc_anns, file_pattern=file_pattern,
doc_folder=doc_folder, label_whitelist=label_whitelist)
@staticmethod
def predict_use_model_in_action(X, model_file, pca_model_file=None,
doc2predicted=None, doc_anns=None, mp_predicted=None,
keep_predict_prob=False, threshold=0.5):
all_true = False
if not isfile(model_file):
logging.info('model file NOT FOUND: %s' % model_file)
all_true = True
else:
if pca_model_file is not None:
pca = jl.load(pca_model_file)
X_new = pca.transform(X)
else:
X_new = X
m = jl.load(model_file)
if keep_predict_prob:
P = m.predict_proba(X_new)
if P.shape[1] == 2:
P = P[:, 1]
else:
P = P[:, 0]
else:
P = m.predict(X_new)
if all_true: # or len(X) <= _min_sample_size:
logging.warning('using querying instead of predicting')
P = numpy.ones(len(X))
else:
logging.info('instance size %s' % len(P))
P = PhenomeLearners.merge_with_pattern_prediction(P, mp_predicted,
pred_prob=keep_predict_prob, threshold=threshold)
PhenomeLearners.collect_prediction(P, doc2predicted=doc2predicted, doc_anns=doc_anns,
keep_predict_prob=keep_predict_prob)
@staticmethod
def collect_prediction(P, doc_anns, doc2predicted, keep_predict_prob=False):
for idx in range(len(P)):
if keep_predict_prob:
if doc_anns is not None:
PhenomeLearners.collect_doc_results(idx, doc_anns, doc2predicted, prob=P[idx])
else:
if P[idx] == 1.0 and doc_anns is not None:
PhenomeLearners.collect_doc_results(idx, doc_anns, doc2predicted)
@staticmethod
def collect_doc_results(idx, doc_anns, doc2predicted, prob=None):
d = doc_anns[idx]['d']
labeled_ann = {'label': doc_anns[idx]['label'],
'ann': doc_anns[idx]['ann']}
if prob is not None:
labeled_ann['prob'] = prob
if d not in doc2predicted:
doc2predicted[d] = [labeled_ann]
else:
doc2predicted[d].append(labeled_ann)
class LabelPerformance(object):
"""
precision/recall/f1 calculation on TP/FN/FP values
"""
def __init__(self, label):
self._label = label
self._tp = 0
self._fn = 0
self._fp = 0
def increase_true_positive(self, k=1):
self._tp += k
def increase_false_negative(self, k=1):
self._fn += k
def increase_false_positive(self, k=1):
self._fp += k
@property
def true_positive(self):
return self._tp
@property
def false_negative(self):
return self._fn
@property
def false_positive(self):
return self._fp
@property
def precision(self):
if self._tp + self._fp == 0:
return -1
else:
return 1.0 * self._tp / (self._tp + self._fp)
@property
def recall(self):
if self._tp + self._fn == 0:
return -1
else:
return 1.0 * self._tp / (self._tp + self._fn)
@property
def f1(self):
if self.precision == -1 or self.recall == -1 or self.precision == 0 or self.recall == 0:
return -1
else:
return 2 / (1 / self.precision + 1 / self.recall)
@staticmethod
def evaluate_to_performance(predicted, labelled, performance_objects):
if predicted == labelled:
if predicted == 1.0:
for pf in performance_objects:
if pf is not None:
pf.increase_true_positive()
elif predicted == 1.0:
for pf in performance_objects:
if pf is not None:
pf.increase_false_positive()
else:
for pf in performance_objects:
if pf is not None:
pf.increase_false_negative()
class BinaryClusterClassifier(object):
def __init__(self, label):
self._name = label
self._class1reps = None
self._class2reps = None
@property
def class1reps(self):
return self._class1reps
@property
def class2reps(self):
return self._class2reps
def cluster(self, class1_data, class2_data):
self._class1reps = BinaryClusterClassifier.do_clustering(class1_data, class_prefix='cls1:')
self._class2reps = BinaryClusterClassifier.do_clustering(class2_data, class_prefix='cls2:')
def classify(self, x, threshold=0.5, complementary_classifiers=None):
p = BinaryClusterClassifier.calculate_most_similar(self, x)
mp = p
if p[1] < threshold and complementary_classifiers is not None:
for classifer in complementary_classifiers:
logging.debug('do extra classifying when the similarity is too low ...')
p = BinaryClusterClassifier.calculate_most_similar(classifer, x)
logging.debug('extra result @ %s' % p[1])
mp = p if p[1] > mp[1] else mp
if p[1] > threshold:
# stop when once exceeding the threshold
break
return mp, 0 if mp[0].startswith('cls2:') else 1
@staticmethod
def calculate_most_similar(classifier, x):
results = []
xa = numpy.array(x).reshape(1, -1)
for cls in classifier.class1reps:
results.append((cls, cosine_similarity(xa, classifier.class1reps[cls])))
for cls in classifier.class2reps:
results.append((cls, cosine_similarity(xa, classifier.class2reps[cls])))
return sorted(results, key=lambda x: -x[1])[0]
@staticmethod
def do_clustering(X, class_prefix='cls:'):
dbm = DBSCAN(eps=1.0).fit(X)
cls2insts = {}
for idx in range(len(dbm.labels_)):
c = dbm.labels_[idx]
cls = '%s%s' % (class_prefix, c)
if cls not in cls2insts:
cls2insts[cls] = [X[idx]]
else:
cls2insts[cls].append(X[idx])
cls2mean = {}
for cls in cls2insts:
cls2mean[cls] = numpy.mean(cls2insts[cls], axis=0).reshape(1, -1)
return cls2mean