Repo related to the paper 'A Python Toolbox for Data-Driven Aerodynamic Modeling using Sparse Gaussian Processes'
Valayer, H.; Bartoli, N.; Castaño-Aguirre, M.; Lafage, R.; Lefebvre, T.; López-Lopera, A.F.; Mouton, S. A Python Toolbox for Data-Driven Aerodynamic Modeling Using Sparse Gaussian Processes. Aerospace 2024, 11, 260. https://doi.org/10.3390/aerospace11040260
SMT 2.3.0 was used to get the results.
pip install smt==2.3.0
-
Notebooks
- Analytic test case :
sparse_gp_analytic.ipynb
- Wind Tunnel test case:
sparse_gp_wtdata.ipynb
(Warning: wind tunnel data are not publicly available)
- Analytic test case :
-
FIG_ANALYTIC
directory contains figures generated from analytic test case notebook -
FIG_WT
directory contains figures generated from wind tunnel test case notebook -
wtdata_results
directory contains csv results generated by following scripts from wind tunnel data -
sparse_gp_wtdata.py
generatessgp_wtdata_results_M\<value\>.csv
and deals with all output variable, all sparse methods, all inducing methods for a given M nb of inducing points -
sparse_gp_wtdata_czc_nkmeans.py
generatessgp_wtdata_results_czc_nkmeans.csv
and deals with the CZC output variable, normalized kmeans and various M values -
sparse_gp_wtdata_noseed_10times.py
generatessgp_wtdata_results_noseed_M50_10times.csv
and deals with all output variable, all sparse methods, all inducing methods by repeating ten times with no random seed