-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpreprocessing.py
59 lines (53 loc) · 2.24 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import codecs, re, random
from collections import Counter
import numpy as np
# function to get vocab, maxvocab
# takes sents : list (tokenized lists of sentences)
# takes maxvocab : int (maximum vocab size incl. UNK, PAD
# takes stoplist : list (words to ignore)
# returns vocab_dict (word to index), inv_vocab_dict (index to word)
def get_vocab(sent_toks, maxvocab=10000, min_count=1, stoplist=[], unk='UNK', pad='PAD', verbose=False):
# get vocab list
vocab = [word for sent in sent_toks for word in sent]
sorted_vocab = sorted(Counter(vocab).most_common(), key=lambda x: x[1], reverse=True)
sorted_vocab = [i for i in sorted_vocab if i[0] not in stoplist and i[0] != unk]
if verbose:
print("total vocab:", len(sorted_vocab))
sorted_vocab = [i for i in sorted_vocab if i[1] >= min_count]
if verbose:
print("vocab over min_count:", len(sorted_vocab))
# reserve for PAD and UNK
sorted_vocab = [i[0] for i in sorted_vocab[:maxvocab - 2]]
vocab_dict = {k: v + 1 for v, k in enumerate(sorted_vocab)}
vocab_dict[unk] = len(sorted_vocab) + 1
vocab_dict[pad] = 0
inv_vocab_dict = {v: k for k, v in vocab_dict.items()}
return vocab_dict, inv_vocab_dict
# function to convert sents to indexed vectors
# takes list : sents (tokenized sentences)
# takes dict : vocab (word to idx mapping)
# returns list of lists of indexed sentences
def index_sents(sent_tokens, vocab_dict, reverse=False, unk_name='UNK', verbose=False):
vectors = []
for sent in sent_tokens:
sent_vect = []
if reverse:
sent = sent[::-1]
for word in sent:
if word in vocab_dict.keys():
sent_vect.append(vocab_dict[word])
else: # out of max_vocab range or OOV
sent_vect.append(vocab_dict[unk_name])
vectors.append(np.asarray(sent_vect))
vectors = np.asarray(vectors)
return vectors
# decode an integer-indexed sequence
# takes indexed_list : one integer-indexedf sentence (list or array)
# takes inv_vocab_dict : dict (index to word)
# returns list of string tokens
def decode_sequence(indexed_list, inv_vocab_dict):
str = []
for idx in indexed_list:
# print(intr)
str.append(inv_vocab_dict[int(idx)])
return(str)