forked from jchelly/SOAP
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcombine_chunks.py
565 lines (515 loc) · 23.7 KB
/
combine_chunks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#!/bin/env python
import socket
import time
import numpy as np
import h5py
from mpi4py import MPI
import virgo.mpi.parallel_hdf5 as phdf5
import virgo.mpi.parallel_sort as psort
from virgo.util.partial_formatter import PartialFormatter
from subhalo_rank import compute_subhalo_rank
import swift_units
from mpi_timer import MPITimer
from property_table import PropertyTable
def sub_snapnum(filename, snapnum):
"""
Substitute the snapshot number into a filename format string
without substituting the file number.
"""
from virgo.util.partial_formatter import PartialFormatter
pf = PartialFormatter()
filename = pf.format(filename, snap_nr=snapnum, file_nr=None)
return filename
def combine_chunks(
args,
cellgrid,
halo_prop_list,
scratch_file_format,
ref_metadata,
nr_chunks,
comm_world,
category_filter,
recently_heated_gas_filter,
cold_dense_gas_filter,
):
"""
Combine the per-chunk output files into a single, sorted output
"""
# Open the per-chunk scratch files
scratch_file = phdf5.MultiFile(
scratch_file_format, file_idx=range(nr_chunks), comm=comm_world
)
# Determine units of halo centres:
# ref_metadata is a list of (name, dimensions, units, description) for each property.
cofp_metadata = [rm for rm in ref_metadata if rm[0] == "InputHalos/HaloCentre"][0]
cofp_units = cofp_metadata[2]
# Sort halos based on what cell their centre is in
with MPITimer(
"Establishing ordering of halos based on SWIFT cell structure", comm_world
):
halo_cofp = scratch_file.read("InputHalos/HaloCentre") * cofp_units
halo_index = scratch_file.read("InputHalos/HaloCatalogueIndex")
cell_indices = (halo_cofp // cellgrid.cell_size).value.astype("int64")
assert cellgrid.dimension[0] >= cellgrid.dimension[1] >= cellgrid.dimension[2]
# Sort first based on position, then on catalogue index
sort_hash_dtype = [("cell_index", np.int64), ("catalogue_index", np.int64)]
sort_hash = np.zeros(cell_indices.shape[0], dtype=sort_hash_dtype)
sort_hash["cell_index"] += cell_indices[:, 0] * cellgrid.dimension[0] ** 2
sort_hash["cell_index"] += cell_indices[:, 1] * cellgrid.dimension[1]
sort_hash["cell_index"] += cell_indices[:, 2]
sort_hash["catalogue_index"] = halo_index
order = psort.parallel_sort(sort_hash, return_index=True, comm=comm_world)
del halo_cofp
# Calculate local count of halos in each cell, and combine on rank 0
local_cell_counts = np.bincount(
sort_hash["cell_index"], minlength=cellgrid.nr_cells[0]
).astype("int64")
assert local_cell_counts.shape[0] == np.prod(cellgrid.dimension)
cell_counts = comm_world.reduce(local_cell_counts)
# Determine total number of halos
total_nr_halos = comm_world.allreduce(len(order))
# Get metadata for derived quantities: these don't exist in the chunk
# output but will be computed by combining other halo properties.
soap_metadata = []
for soapkey in PropertyTable.soap_properties:
props = PropertyTable.full_property_list[f"{soapkey}"]
name = f"SOAP/{soapkey}"
size = props[1]
if size == 1:
# Scalar quantity
size = ()
else:
# Vector quantity
size = (size,)
dtype = props[2]
unit = cellgrid.get_unit(props[3])
description = props[4]
physical = props[9]
a_exponent = props[10]
if not physical:
unit = unit * cellgrid.get_unit("a") ** a_exponent
soap_metadata.append(
(name, size, unit, dtype, description, physical, a_exponent)
)
# Add metadata for FOF properties
fof_metadata = []
if (args.fof_group_filename != "") and (args.halo_format == "HBTplus"):
for fofkey in ["Centres", "Masses", "Sizes"]:
props = PropertyTable.full_property_list[f"FOF/{fofkey}"]
name = f"InputHalos/FOF/{fofkey}"
size = props[1]
if size == 1:
# Scalar quantity
size = ()
else:
# Vector quantity
size = (size,)
dtype = props[2]
unit = cellgrid.get_unit(props[3])
description = props[4]
physical = props[9]
a_exponent = props[10]
if not physical:
unit = unit * cellgrid.get_unit("a") ** a_exponent
fof_metadata.append(
(name, size, unit, dtype, description, physical, a_exponent)
)
# First MPI rank sets up the output file
with MPITimer("Creating output file", comm_world):
output_file = sub_snapnum(args.output_file, args.snapshot_nr)
if comm_world.Get_rank() == 0:
# Create the file
outfile = h5py.File(output_file, "w")
# Write parameters
params = outfile.create_group("Parameters")
params.attrs["swift_filename"] = args.swift_filename
params.attrs["membership_filename"] = args.extra_input[-1]
params.attrs["extra_input"] = args.extra_input[:-1]
params.attrs["halo_basename"] = args.halo_basename
params.attrs["halo_format"] = args.halo_format
params.attrs["snapshot_nr"] = args.snapshot_nr
params.attrs["centrals_only"] = 0 if args.centrals_only == False else 1
calc_names = sorted([hp.name for hp in halo_prop_list])
params.attrs["calculations"] = calc_names
params.attrs["halo_indices"] = (
args.halo_indices
if args.halo_indices is not None
else np.ndarray(0, dtype=int)
)
recently_heated_gas_metadata = recently_heated_gas_filter.get_metadata()
recently_heated_gas_params = params.create_group("RecentlyHeatedGasFilter")
for at, val in recently_heated_gas_metadata.items():
recently_heated_gas_params.attrs[at] = val
if cold_dense_gas_filter.initialised:
cold_dense_gas_params = params.create_group("ColdDenseGasFilter")
for at, val in cold_dense_gas_filter.get_metadata().items():
cold_dense_gas_params.attrs[at] = val
# Write code information
code = outfile.create_group("Code")
code.attrs["Code"] = "SOAP"
code.attrs["git_hash"] = args.git_hash
# Copy swift metadata
params = cellgrid.copy_swift_metadata(outfile)
# Generate header
header = outfile.create_group("Header")
for attr in [
"BoxSize",
"Dimension",
"NumPartTypes",
"Redshift",
"RunName",
"Scale-factor",
]:
header.attrs[attr] = cellgrid.swift_header_group[attr]
header.attrs["Code"] = "SOAP"
header.attrs["Dimension"] = cellgrid.swift_header_group["Dimension"]
header.attrs["NumFilesPerSnapshot"] = np.array([1], dtype="int32")
header.attrs["NumSubhalos_ThisFile"] = np.array(
[total_nr_halos], dtype="int32"
)
header.attrs["NumSubhalos_Total"] = np.array(
[total_nr_halos], dtype="int32"
)
n_part_type = cellgrid.swift_header_group["NumPartTypes"][0]
header.attrs["NumPart_ThisFile"] = np.zeros(n_part_type, dtype="int32")
header.attrs["NumPart_Total"] = np.zeros(n_part_type, dtype="uint32")
header.attrs["NumPart_Total_HighWord"] = np.zeros(
n_part_type, dtype="uint32"
)
header.attrs["OutputType"] = "SOAP"
snapshot_date = time.strftime("%H:%M:%S %Y-%m-%d GMT", time.gmtime())
header.attrs["SnapshotDate"] = snapshot_date
header.attrs["System"] = socket.gethostname()
header.attrs["ThisFile"] = np.array([0], dtype="int32")
# Write cosmology
cosmo = outfile.create_group("Cosmology")
for name, value in cellgrid.cosmology.items():
cosmo.attrs[name] = [value]
# Write units
units = outfile.create_group("Units")
for name, value in cellgrid.swift_units_group.items():
units.attrs[name] = [value]
# Write physical constants
const = outfile.create_group("PhysicalConstants")
const = const.create_group("CGS")
for name, value in cellgrid.constants.items():
const.attrs[name] = [value]
# Write cell information
cells = outfile.create_group("Cells")
cells_metadata = cells.create_group("Meta-data")
cells_metadata.attrs["dimension"] = cellgrid.dimension
cells_metadata.attrs["nr_cells"] = cellgrid.nr_cells
cell_size = cellgrid.cell_size.to("a*snap_length").value
cells_metadata.attrs["size"] = cell_size
cells.create_dataset("Centres", data=cellgrid.cell_centres)
cells.create_dataset("Counts/Subhalos", data=cell_counts)
cells.create_dataset(
"Files/Subhalos", data=np.zeros(cellgrid.nr_cells[0], dtype="int32")
)
cell_offsets = np.cumsum(cell_counts) - cell_counts
cells.create_dataset("OffsetsInFile/Subhalos", data=cell_offsets)
# Create datasets for all halo properties
for metadata in ref_metadata + soap_metadata + fof_metadata:
name, size, unit, dtype, description, physical, a_exponent = metadata
if description == "No description available":
print(f"{name} not found in property table")
shape = (total_nr_halos,) + size
dataset = outfile.create_dataset(
name, shape=shape, dtype=dtype, fillvalue=None
)
# Add units and description
attrs = swift_units.attributes_from_units(unit, physical, a_exponent)
attrs["Description"] = description
mask_metadata = category_filter.get_filter_metadata_for_property(name)
attrs.update(mask_metadata)
compression_metadata = category_filter.get_compression_metadata(name)
attrs.update(compression_metadata)
for attr_name, attr_value in attrs.items():
dataset.attrs[attr_name] = attr_value
# Save the names of the groups containing the data
subhalo_types = set()
for metadata in ref_metadata + soap_metadata + fof_metadata:
# Remove property name from full hdf5 path
group_name = "/".join(metadata[0].split("/")[:-1])
subhalo_types.add(group_name)
header.attrs["SubhaloTypes"] = sorted(subhalo_types)
# Save masks for each halo variation
for halo_prop in halo_prop_list:
for attr_name, attr_value in halo_prop.mask_metadata.items():
outfile[halo_prop.group_name].attrs[attr_name] = attr_value
outfile.close()
comm_world.barrier()
# Reopen the output file in parallel mode
outfile = h5py.File(output_file, "r+", driver="mpio", comm=comm_world)
# Certain properties need to be kept for calculating the SOAP properties
subhalo_rank_props = {
"VR": (
"InputHalos/VR/ID",
"BoundSubhalo/TotalMass",
"InputHalos/VR/HostHaloID",
),
"HBTplus": (
"InputHalos/HBTplus/HostFOFId",
"BoundSubhalo/TotalMass",
"InputHalos/HBTplus/TrackId",
),
}.get(args.halo_format, ())
host_halo_index_props = {
"VR": ("InputHalos/VR/ID", "InputHalos/VR/HostHaloID"),
"HBTplus": ("InputHalos/HBTplus/HostFOFId", "InputHalos/IsCentral"),
}.get(args.halo_format, ())
fof_props = {
"HBTplus": ("InputHalos/HBTplus/HostFOFId", "InputHalos/IsCentral")
}.get(args.halo_format, ())
props_to_keep = set((*subhalo_rank_props, *host_halo_index_props, *fof_props))
# Also keep M200c for calculating reduced_snapshot flag
if "reduced_snapshots" in args.calculations:
props_to_keep.add("SO/200_crit/TotalMass")
props_kept = {}
with MPITimer("Writing output properties", comm_world):
# Loop over halo properties, a few at a time
total_nr_props = len(ref_metadata)
props_per_iteration = min(
total_nr_props, 100
) # TODO: how to choose this number?
for i1 in range(0, total_nr_props, props_per_iteration):
i2 = min(i1 + props_per_iteration, total_nr_props)
# Find the properties to reorder on this iteration
names = [metadata[0] for metadata in ref_metadata[i1:i2]]
# Read in and reorder the properties
data = scratch_file.read(names)
for name in names:
data[name] = psort.fetch_elements(data[name], order, comm=comm_world)
# Keep a reference to any arrays we'll need later
for name in names:
if name in props_to_keep:
props_kept[name] = data[name]
# Write these properties to the output file
for name in names:
phdf5.collective_write(
outfile, name, data[name], create_dataset=False, comm=comm_world
)
del data
# Save the properties from the FOF catalogues
if fof_metadata:
# Extract units from FOF file
if comm_world.Get_rank() == 0:
with h5py.File(
args.fof_group_filename.format(file_nr=0, snap_nr=args.snapshot_nr), "r"
) as fof_file:
fof_reg = swift_units.unit_registry_from_snapshot(fof_file)
fof_com_unit = swift_units.units_from_attributes(
dict(fof_file["Groups/Centres"].attrs), fof_reg
)
fof_mass_unit = swift_units.units_from_attributes(
dict(fof_file["Groups/Masses"].attrs), fof_reg
)
else:
fof_reg = None
fof_com_unit = None
fof_mass_unit = None
(fof_reg, fof_com_unit, fof_mass_unit) = comm_world.bcast(
(fof_reg, fof_com_unit, fof_mass_unit)
)
# Open file in parallel
pf = PartialFormatter()
fof_filename = pf.format(
args.fof_group_filename, snap_nr=args.snapshot_nr, file_nr=None
)
fof_file = phdf5.MultiFile(
fof_filename,
file_nr_attr=("Header", "NumFilesPerSnapshot"),
comm=comm_world,
)
# Save data only for central halos which are not hostless
keep = (props_kept["InputHalos/IsCentral"] == 1) & (
props_kept["InputHalos/HBTplus/HostFOFId"] != -1
)
fof_ids = props_kept["InputHalos/HBTplus/HostFOFId"][keep]
indices = psort.parallel_match(
fof_ids, fof_file.read("Groups/GroupIDs"), comm=comm_world
)
# Assert that a FOF group has been found for all subhalos which should have one
assert np.all(indices >= 0)
fof_com = np.zeros((keep.shape[0], 3), dtype=np.float64)
fof_com[keep] = psort.fetch_elements(
fof_file.read("Groups/Centres"), indices, comm=comm_world
)
props = PropertyTable.full_property_list[f"FOF/Centres"]
soap_com_unit = cellgrid.get_unit(props[3])
physical = props[9]
a_exponent = props[10]
if not physical:
soap_com_unit = soap_com_unit * cellgrid.get_unit('a') ** a_exponent
fof_com = (fof_com * fof_com_unit).to(soap_com_unit)
phdf5.collective_write(
outfile,
"InputHalos/FOF/Centres",
fof_com,
create_dataset=False,
comm=comm_world,
)
fof_mass = np.zeros(keep.shape[0], dtype=np.float64)
fof_mass[keep] = psort.fetch_elements(
fof_file.read("Groups/Masses"), indices, comm=comm_world
)
props = PropertyTable.full_property_list[f"FOF/Masses"]
soap_mass_unit = cellgrid.get_unit(props[3])
physical = props[9]
a_exponent = props[10]
if not physical:
soap_mass_unit = soap_mass_unit * cellgrid.get_unit('a') ** a_exponent
fof_mass = (fof_mass * fof_mass_unit).to(soap_mass_unit)
phdf5.collective_write(
outfile,
"InputHalos/FOF/Masses",
fof_mass,
create_dataset=False,
comm=comm_world,
)
fof_size = np.zeros(keep.shape[0], dtype=np.int64)
fof_size[keep] = psort.fetch_elements(
fof_file.read("Groups/Sizes"), indices, comm=comm_world
)
phdf5.collective_write(
outfile,
"InputHalos/FOF/Sizes",
fof_size,
create_dataset=False,
comm=comm_world,
)
# Calculate the index in the SOAP output of the host field halo (VR) or the central subhalo of the host FOF group (HBTplus)
if len(host_halo_index_props) > 0:
with MPITimer("Calculate and write host index of each satellite", comm_world):
if args.halo_format == "VR":
sat_mask = props_kept["InputHalos/VR/HostHaloID"] != -1
host_ids = props_kept["InputHalos/VR/HostHaloID"][sat_mask]
# If we run on an incomplete catalogue (e.g. for testing) some satellites will have an index == -1
indices = psort.parallel_match(
host_ids, props_kept["InputHalos/VR/ID"], comm=comm_world
)
host_halo_index = -1 * np.ones(sat_mask.shape[0], dtype=np.int64)
host_halo_index[sat_mask] = indices
elif args.halo_format == "HBTplus":
# Create array where FOF IDs are only set for centrals, so we can match to it
cen_fof_id = props_kept["InputHalos/HBTplus/HostFOFId"].copy()
sat_mask = props_kept["InputHalos/IsCentral"] == 0
cen_fof_id[sat_mask] = -1
host_ids = props_kept["InputHalos/HBTplus/HostFOFId"][sat_mask]
# If we run on an incomplete catalogue (e.g. for testing) some satellites will have an index == -1
indices = psort.parallel_match(host_ids, cen_fof_id, comm=comm_world)
host_halo_index = -1 * np.ones(sat_mask.shape[0], dtype=np.int64)
host_halo_index[sat_mask] = indices
else:
# Set default value
host_halo_index = -1 * np.ones(order.shape[0], dtype=np.int64)
if comm_world.Get_rank() == 0:
print("Not calculating host halo index")
phdf5.collective_write(
outfile,
"SOAP/HostHaloIndex",
host_halo_index,
create_dataset=False,
comm=comm_world,
)
# Write out subhalo ranking by mass within host halos, if we have all the required quantities.
if len(subhalo_rank_props) > 0:
with MPITimer("Calculate and write subhalo ranking by mass", comm_world):
if args.halo_format == "VR":
# Set field halos to be their own host (VR sets hostid=-1 in this case)
field = props_kept["InputHalos/VR/HostHaloID"] < 0
host_id = props_kept[
"InputHalos/VR/HostHaloID"
].copy() # avoid modifying input
host_id[field] = props_kept["InputHalos/VR/ID"][field]
elif args.halo_format == "HBTplus":
# Set hostless halos to have a unique FOF group by using -TrackId
hostless = props_kept["InputHalos/HBTplus/HostFOFId"] < 0
host_id = props_kept["InputHalos/HBTplus/HostFOFId"].copy()
host_id[hostless] = -props_kept["InputHalos/HBTplus/TrackId"][hostless]
subhalo_rank = compute_subhalo_rank(
host_id, props_kept["BoundSubhalo/TotalMass"], comm_world
)
else:
# Set default value
subhalo_rank = -1 * np.ones(order.shape[0], dtype=np.int32)
if comm_world.Get_rank() == 0:
print("Not calculating subhalo ranking by mass")
phdf5.collective_write(
outfile,
"SOAP/SubhaloRankByBoundMass",
subhalo_rank,
create_dataset=False,
comm=comm_world,
)
# Determine which objects should be saved in the reduced snapshot files
if ("reduced_snapshots" in args.calculations) and (
"SO/200_crit/TotalMass" in props_kept
):
with MPITimer("Calculate and write reduced snapshot membership", comm_world):
# Load parameters. We create mass bins with the lower limit of the smallest mass bin
# given by "min_halo_mass". The size of the bins is set by "halo_bin_size_dex".
# For each bin we keep at most "halos_per_bin" objects.
halos_per_bin = int(args.calculations["reduced_snapshots"]["halos_per_bin"])
halo_bin_size = float(
args.calculations["reduced_snapshots"]["halo_bin_size_dex"]
)
min_mass = np.log10(
float(args.calculations["reduced_snapshots"]["min_halo_mass"])
)
# Load masses and convert to Msun
mass_metadata = [
metadata
for metadata in ref_metadata
if metadata[0] == "SO/200_crit/TotalMass"
]
mass_unit = cellgrid.get_unit(mass_metadata[0][2])
mass = (props_kept["SO/200_crit/TotalMass"] * mass_unit).to("Msun").value
# Determine mass bins
local_max_mass = np.max(mass) if mass.shape[0] else 0
max_mass = comm_world.allreduce(local_max_mass, MPI.MAX)
max_mass = np.log10(max_mass) + halo_bin_size
bins = 10 ** np.arange(min_mass, max_mass, halo_bin_size)
# Determine how many halos each rank should keep
np.random.seed(0)
n_halo_local, _ = np.histogram(mass, bins=bins)
n_halo = np.array(comm_world.gather(n_halo_local))
if comm_world.Get_rank() == 0:
n_keep = n_halo.copy()
n_halo_total = np.sum(n_halo, axis=0)
for i_bin in range(bins.shape[0] - 1):
# Keep all halos in this bin
if n_halo_total[i_bin] <= halos_per_bin:
continue
# Add halos to a random rank until we have enough
n_keep[:, i_bin] = 0
p_keep = n_halo[:, i_bin] / n_halo_total[i_bin]
while np.sum(n_keep[:, i_bin]) < halos_per_bin:
i_rank = np.random.choice(comm_world.Get_size(), p=p_keep)
if n_keep[i_rank, i_bin] < n_halo[i_rank, i_bin]:
n_keep[i_rank, i_bin] += 1
else:
n_keep = None
n_keep = comm_world.bcast(n_keep)[comm_world.Get_rank()]
# Each rank determines which halos to keep
reduced_snapshot = np.zeros(order.shape[0], dtype=np.int32)
for i_bin in range(bins.shape[0] - 1):
mask = (bins[i_bin] <= mass) & (mass < bins[i_bin + 1])
idx = np.where(mask)[0]
assert n_keep[i_bin] <= np.sum(mask)
keep_idx = np.random.choice(idx, size=n_keep[i_bin], replace=False)
reduced_snapshot[keep_idx] = 1
else:
# Set default value
reduced_snapshot = np.zeros(order.shape[0], dtype=np.int32)
if comm_world.Get_rank() == 0:
print("Not calculating reduced snapshot membership")
phdf5.collective_write(
outfile,
"SOAP/IncludedInReducedSnapshot",
reduced_snapshot,
create_dataset=False,
comm=comm_world,
)
# Done.
outfile.close()