-
Notifications
You must be signed in to change notification settings - Fork 0
/
attack_step_target_class.py
157 lines (122 loc) · 5.44 KB
/
attack_step_target_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""Implementation of sample attack."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import os
import numpy as np
from scipy.misc import imread
from scipy.misc import imsave
import tensorflow as tf
from tensorflow.contrib.slim.nets import inception
slim = tf.contrib.slim
tf.flags.DEFINE_string(
'master', '', 'The address of the TensorFlow master to use.')
tf.flags.DEFINE_string(
'checkpoint_path', '', 'Path to checkpoint for inception network.')
tf.flags.DEFINE_string(
'input_dir', '', 'Input directory with images.')
tf.flags.DEFINE_string(
'output_dir', '', 'Output directory with images.')
tf.flags.DEFINE_float(
'max_epsilon', 16.0, 'Maximum size of adversarial perturbation.')
tf.flags.DEFINE_integer(
'image_width', 299, 'Width of each input images.')
tf.flags.DEFINE_integer(
'image_height', 299, 'Height of each input images.')
tf.flags.DEFINE_integer(
'batch_size', 16, 'How many images process at one time.')
FLAGS = tf.flags.FLAGS
def load_target_class(input_dir):
"""Loads target classes."""
with tf.gfile.Open(os.path.join(input_dir, 'target_class.csv')) as f:
return {row[0]: int(row[1]) for row in csv.reader(f) if len(row) >= 2}
def load_images(input_dir, batch_shape):
"""Read png images from input directory in batches.
Args:
input_dir: input directory
batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3]
Yields:
filenames: list file names without path of each image
Lenght of this list could be less than batch_size, in this case only
first few images of the result are elements of the minibatch.
images: array with all images from this batch
"""
images = np.zeros(batch_shape)
filenames = []
idx = 0
batch_size = batch_shape[0]
for filepath in tf.gfile.Glob(os.path.join(input_dir, '*.png')):
with tf.gfile.Open(filepath) as f:
image = imread(f, mode='RGB').astype(np.float) / 255.0
# Images for inception classifier are normalized to be in [-1, 1] interval.
images[idx, :, :, :] = image * 2.0 - 1.0
filenames.append(os.path.basename(filepath))
idx += 1
if idx == batch_size:
yield filenames, images
filenames = []
images = np.zeros(batch_shape)
idx = 0
if idx > 0:
yield filenames, images
def save_images(images, filenames, output_dir):
"""Saves images to the output directory.
Args:
images: array with minibatch of images
filenames: list of filenames without path
If number of file names in this list less than number of images in
the minibatch then only first len(filenames) images will be saved.
output_dir: directory where to save images
"""
for i, filename in enumerate(filenames):
# Images for inception classifier are normalized to be in [-1, 1] interval,
# so rescale them back to [0, 1].
with tf.gfile.Open(os.path.join(output_dir, filename), 'w') as f:
imsave(f, (images[i, :, :, :] + 1.0) * 0.5, format='png')
def main(_):
# Images for inception classifier are normalized to be in [-1, 1] interval,
# eps is a difference between pixels so it should be in [0, 2] interval.
# Renormalizing epsilon from [0, 255] to [0, 2].
eps = 2.0 * FLAGS.max_epsilon / 255.0
batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]
num_classes = 1001
tf.logging.set_verbosity(tf.logging.INFO)
all_images_taget_class = load_target_class(FLAGS.input_dir)
with tf.Graph().as_default():
# Prepare graph
x_input = tf.placeholder(tf.float32, shape=batch_shape)
with slim.arg_scope(inception.inception_v3_arg_scope()):
logits, end_points = inception.inception_v3(
x_input, num_classes=num_classes, is_training=False)
target_class_input = tf.placeholder(tf.int32, shape=[FLAGS.batch_size])
one_hot_target_class = tf.one_hot(target_class_input, num_classes)
cross_entropy = tf.losses.softmax_cross_entropy(one_hot_target_class,
logits,
label_smoothing=0.1,
weights=1.0)
cross_entropy += tf.losses.softmax_cross_entropy(one_hot_target_class,
end_points['AuxLogits'],
label_smoothing=0.1,
weights=0.4)
x_adv = x_input - eps * tf.sign(tf.gradients(cross_entropy, x_input)[0])
x_adv = tf.clip_by_value(x_adv, -1.0, 1.0)
# Run computation
saver = tf.train.Saver(slim.get_model_variables())
session_creator = tf.train.ChiefSessionCreator(
scaffold=tf.train.Scaffold(saver=saver),
checkpoint_filename_with_path=FLAGS.checkpoint_path,
master=FLAGS.master)
with tf.train.MonitoredSession(session_creator=session_creator) as sess:
for filenames, images in load_images(FLAGS.input_dir, batch_shape):
target_class_for_batch = (
[all_images_taget_class[n] for n in filenames]
+ [0] * (FLAGS.batch_size - len(filenames)))
adv_images = sess.run(x_adv,
feed_dict={
x_input: images,
target_class_input: target_class_for_batch
})
save_images(adv_images, filenames, FLAGS.output_dir)
if __name__ == '__main__':
tf.app.run()