-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathner_evaluate.py
executable file
·187 lines (164 loc) · 5.91 KB
/
ner_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import codecs
import numpy as np
def get_chunks(seq, tags):
"""
tags:dic{'per':1,....}
Args:
seq: [4, 4, 0, 0, ...] sequence of labels
tags: dict["O"] = 4
Returns:
list of (chunk_type, chunk_start, chunk_end)
Example:
seq = [4, 5, 0, 3]
tags = {"B-PER": 4, "I-PER": 5, "B-LOC": 3}
result = [("PER", 0, 2), ("LOC", 3, 4)]
"""
default = tags['O']
idx_to_tag = {idx: tag for tag, idx in tags.items()}
chunks = []
chunk_type, chunk_start = None, None
for i, tok in enumerate(seq):
#End of a chunk 1
if tok == default and chunk_type is not None:
# Add a chunk.
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = None, None
# End of a chunk + start of a chunk!
elif tok != default:
tok_chunk_class, tok_chunk_type = get_chunk_type(tok, idx_to_tag)
if chunk_type is None:
chunk_type, chunk_start = tok_chunk_type, i
elif tok_chunk_type != chunk_type or tok_chunk_class == "B":
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = tok_chunk_type, i
else:
pass
# end condition
if chunk_type is not None:
chunk = (chunk_type, chunk_start, len(seq))
chunks.append(chunk)
return chunks
def get_chunk_type(tok, idx_to_tag):
"""
Args:
tok: id of token, such as 4
idx_to_tag: dictionary {4: "B-PER", ...}
Returns:
tuple: "B", "PER"
"""
tag_name = idx_to_tag[tok]
tag_class = tag_name.split('-')[0]
tag_type = tag_name.split('-')[-1]
return tag_class, tag_type
# def run_evaluate(self, sess, test, tags):
def evaluate(labels_pred, labels,words,tags,max_sent,id_to_vocb):
"""
words,pred, right: is a sequence, is label index or word index.
Evaluates performance on test set
Args:
sess: tensorflow session
test: dataset that yields tuple of sentences, tags
tags: {tag: index} dictionary
Returns:
accuracy
f1 score
...
"""
#file_write = file('../data/predicted/results.txt','w')
index = 0
sents_length = []
for word in words:
if 0 in word:
nozero_inds = np.nonzero(word)
index = nozero_inds[0][0]
sents_length.append(len(word)-index) # the index of '0' is padded
else:
sents_length.append(35)
accs = []
correct_preds, total_correct, total_preds = 0., 0., 0.
for lab, lab_pred, length, word_sent in zip(labels, labels_pred, sents_length, words):
word_st = word_sent[max_sent-length:]
lab = lab[max_sent-length:]
lab_pred = lab_pred[max_sent-length:]
accs += [a==b for (a, b) in zip(lab, lab_pred)]
lab_chunks = set(get_chunks(lab, tags))
lab_pred_chunks = set(get_chunks(lab_pred, tags))
correct_preds += len(lab_chunks & lab_pred_chunks)
total_preds += len(lab_pred_chunks)
total_correct += len(lab_chunks)
'''
for i in range(len(word_st)):
file_write.write('%s\t%s\t%s\n'%(id_to_vocb[word_st[i]],lab[i],lab_pred[i]))
file_write.write('\n')
'''
p = correct_preds / total_preds if correct_preds > 0 else 0
r = correct_preds / total_correct if correct_preds > 0 else 0
f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0
acc = np.mean(accs)
return acc, f1,p,r
def evaluate_each_class(labels_pred, labels,words,tags,max_sent,id_to_vocb, class_type):
#class_type:PER or LOC or ORG
index = 0
sents_length = []
for word in words:
if 0 in word:
nozero_inds = np.nonzero(word)
index = nozero_inds[0][0]
sents_length.append(len(word)-index) # the index of '0' is padded
else:
sents_length.append(35)
accs = []
correct_preds, total_correct, total_preds = 0., 0., 0.
correct_preds_cla_type, total_preds_cla_type, total_correct_cla_type = 0., 0., 0.
for lab, lab_pred, length, word_sent in zip(labels, labels_pred, sents_length, words):
lab_pre_class_type = []
lab_class_type=[]
word_st = word_sent[max_sent-length:]
lab = lab[max_sent-length:]
lab_pred = lab_pred[max_sent-length:]
lab_chunks = get_chunks(lab, tags)
lab_pred_chunks = get_chunks(lab_pred, tags)
for i in range(len(lab_pred_chunks)):
if lab_pred_chunks[i][0] ==class_type:
lab_pre_class_type.append(lab_pred_chunks[i])
lab_pre_class_type_c = set(lab_pre_class_type)
for i in range(len(lab_chunks)):
if lab_chunks[i][0] ==class_type:
lab_class_type.append(lab_chunks[i])
lab_class_type_c = set(lab_class_type)
lab_chunksss = set(lab_chunks)
correct_preds_cla_type +=len(lab_pre_class_type_c & lab_chunksss)
total_preds_cla_type +=len(lab_pre_class_type_c)
total_correct_cla_type += len(lab_class_type_c)
p = correct_preds_cla_type / total_preds_cla_type if correct_preds_cla_type > 0 else 0
r = correct_preds_cla_type / total_correct_cla_type if correct_preds_cla_type > 0 else 0
f1 = 2 * p * r / (p + r) if correct_preds_cla_type > 0 else 0
return f1,p,r
if __name__ == '__main__':
max_sent=10
tags = {'0':0,
'B-PER':1, 'I-PER':2,
'B-LOC':3, 'I-LOC':4,
'B-ORG':5, 'I-ORG':6,
'B-OTHER':7, 'I-OTHER':8,
'O':9}
labels_pred=[
[9,9,9,1,3,1,2,2,0,0],
[9,9,9,1,3,1,2,0,0,0]
]
labels = [
[9,9,9,9,3,1,2,2,0,0],
[9,9,9,9,3,1,2,2,0,0]
]
words = [
[0,0,0,0,0,3,6,8,5,7],
[0,0,0,4,5,6,7,9,1,7]
]
id_to_vocb = {0:'a',1:'b',2:'c',3:'d',4:'e',5:'f',6:'g',7:'h',8:'i',9:'j'}
class_type = 'PER'
acc, f1,p,r = evaluate(labels_pred, labels,words,tags,max_sent,id_to_vocb)
print acc, f1,p,r
f1,p,r = evaluate_each_class(labels_pred, labels,words,tags,max_sent,id_to_vocb, class_type)
print f1,p,r