-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatos_latex.txt
388 lines (305 loc) · 22.8 KB
/
Datos_latex.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
A continuación se exportan los datos obtenidos mediante el cálculo del método de rigidez
Transformación de cargas externas de globales a locales
Cargas Distribuidas en globales
Elemento C
Q_C
\frac{10 xc}{3} - 90
Elemento D
Q_C
14 xd - 70
Cargas Distribuidas en locales
Elemento C
p_C o carga axial
xc - 27
q_C o carga cortante
3 xc - 81
Elemento D
p_D o carga axial
\frac{700}{29} - \frac{140 xd}{29}
q_D o carga cortante
\frac{350 xd}{29} - \frac{1750}{29}
Datos elemento A
Matriz de Rigidez en locales
\left[\begin{matrix}3.8013 \cdot 10^{6} & 0 & 0 & -3.8013 \cdot 10^{6} & 0 & 0\\0 & 1.5574 \cdot 10^{5} & 3.5747 \cdot 10^{5} & 0 & -1.3188 \cdot 10^{5} & 3.3761 \cdot 10^{5}\\0 & 3.5747 \cdot 10^{5} & 1.1613 \cdot 10^{6} & 0 & -3.3761 \cdot 10^{5} & 5.6646 \cdot 10^{5}\\-3.8013 \cdot 10^{6} & 0 & 0 & 3.8013 \cdot 10^{6} & 0 & 0\\0 & -1.3188 \cdot 10^{5} & -3.3761 \cdot 10^{5} & 0 & 1.5574 \cdot 10^{5} & -3.5747 \cdot 10^{5}\\0 & 3.3761 \cdot 10^{5} & 5.6646 \cdot 10^{5} & 0 & -3.5747 \cdot 10^{5} & 1.1613 \cdot 10^{6}\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}0\\0\\0\\0\\0\\0\end{matrix}\right]
Matriz de transformación
\left[\begin{matrix}0 & 1.0 & 0 & 0 & 0 & 0\\-1.0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 1.0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 1.0 & 0\\0 & 0 & 0 & -1.0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 1.0\end{matrix}\right]
Matriz de Rigidez en coordenadas Globales
\left[\begin{matrix}1.5574 \cdot 10^{5} & 0 & -3.5747 \cdot 10^{5} & -1.3188 \cdot 10^{5} & 0 & -3.3761 \cdot 10^{5}\\0 & 3.8013 \cdot 10^{6} & 0 & 0 & -3.8013 \cdot 10^{6} & 0\\-3.5747 \cdot 10^{5} & 0 & 1.1613 \cdot 10^{6} & 3.3761 \cdot 10^{5} & 0 & 5.6646 \cdot 10^{5}\\-1.3188 \cdot 10^{5} & 0 & 3.3761 \cdot 10^{5} & 1.5574 \cdot 10^{5} & 0 & 3.5747 \cdot 10^{5}\\0 & -3.8013 \cdot 10^{6} & 0 & 0 & 3.8013 \cdot 10^{6} & 0\\-3.3761 \cdot 10^{5} & 0 & 5.6646 \cdot 10^{5} & 3.5747 \cdot 10^{5} & 0 & 1.1613 \cdot 10^{6}\end{matrix}\right]
Vector de empotramiento en globales
\left[\begin{matrix}0\\0\\0\\0\\0\\0\end{matrix}\right]
Datos elemento B
Matriz de Rigidez en locales
\left[\begin{matrix}6.0 \cdot 10^{5} & 0 & 0 & -6.0 \cdot 10^{5} & 0 & 0\\0 & 3375.0 & 6750.0 & 0 & -3375.0 & 6750.0\\0 & 6750.0 & 18000.0 & 0 & -6750.0 & 9000.0\\-6.0 \cdot 10^{5} & 0 & 0 & 6.0 \cdot 10^{5} & 0 & 0\\0 & -3375.0 & -6750.0 & 0 & 3375.0 & -6750.0\\0 & 6750.0 & 9000.0 & 0 & -6750.0 & 18000.0\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}0\\0\\0\\0\\0\\0\end{matrix}\right]
Matriz de transformación
\left[\begin{matrix}0 & 1.0 & 0 & 0 & 0 & 0\\-1.0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 1.0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 1.0 & 0\\0 & 0 & 0 & -1.0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 1.0\end{matrix}\right]
Matriz de Rigidez en coordenadas Globales
\left[\begin{matrix}3375.0 & 0 & -6750.0 & -3375.0 & 0 & -6750.0\\0 & 6.0 \cdot 10^{5} & 0 & 0 & -6.0 \cdot 10^{5} & 0\\-6750.0 & 0 & 18000.0 & 6750.0 & 0 & 9000.0\\-3375.0 & 0 & 6750.0 & 3375.0 & 0 & 6750.0\\0 & -6.0 \cdot 10^{5} & 0 & 0 & 6.0 \cdot 10^{5} & 0\\-6750.0 & 0 & 9000.0 & 6750.0 & 0 & 18000.0\end{matrix}\right]
Vector de empotramiento en globales
\left[\begin{matrix}0\\0\\0\\0\\0\\0\end{matrix}\right]
Datos elemento C
Matriz de Rigidez en locales
\left[\begin{matrix}3.7947 \cdot 10^{5} & 0 & 0 & -3.7947 \cdot 10^{5} & 0 & 0\\0 & 853.81 & 2700.0 & 0 & -853.81 & 2700.0\\0 & 2700.0 & 11384.0 & 0 & -2700.0 & 5692.1\\-3.7947 \cdot 10^{5} & 0 & 0 & 3.7947 \cdot 10^{5} & 0 & 0\\0 & -853.81 & -2700.0 & 0 & 853.81 & -2700.0\\0 & 2700.0 & 5692.1 & 0 & -2700.0 & 11384.0\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}78.715\\238.14\\244.7\\72.048\\214.14\\-232.05\end{matrix}\right]
Matriz de transformación
\left[\begin{matrix}0.94868 & 0.31623 & 0 & 0 & 0 & 0\\-0.31623 & 0.94868 & 0 & 0 & 0 & 0\\0 & 0 & 1.0 & 0 & 0 & 0\\0 & 0 & 0 & 0.94868 & 0.31623 & 0\\0 & 0 & 0 & -0.31623 & 0.94868 & 0\\0 & 0 & 0 & 0 & 0 & 1.0\end{matrix}\right]
Matriz de Rigidez en coordenadas Globales
\left[\begin{matrix}3.4161 \cdot 10^{5} & 1.1359 \cdot 10^{5} & -853.81 & -3.4161 \cdot 10^{5} & -1.1359 \cdot 10^{5} & -853.81\\1.1359 \cdot 10^{5} & 38716.0 & 2561.4 & -1.1359 \cdot 10^{5} & -38716.0 & 2561.4\\-853.81 & 2561.4 & 11384.0 & 853.81 & -2561.4 & 5692.1\\-3.4161 \cdot 10^{5} & -1.1359 \cdot 10^{5} & 853.81 & 3.4161 \cdot 10^{5} & 1.1359 \cdot 10^{5} & 853.81\\-1.1359 \cdot 10^{5} & -38716.0 & -2561.4 & 1.1359 \cdot 10^{5} & 38716.0 & -2561.4\\-853.81 & 2561.4 & 5692.1 & 853.81 & -2561.4 & 11384.0\end{matrix}\right]
Vector de empotramiento en globales
\left[\begin{matrix}-0.63246\\250.82\\244.7\\0.63246\\225.94\\-232.05\end{matrix}\right]
Datos elemento D
Matriz de Rigidez en locales
\left[\begin{matrix}4.4567 \cdot 10^{5} & 0 & 0 & -4.4567 \cdot 10^{5} & 0 & 0\\0 & 1383.1 & 3724.1 & 0 & -1383.1 & 3724.1\\0 & 3724.1 & 13370.0 & 0 & -3724.1 & 6685.0\\-4.4567 \cdot 10^{5} & 0 & 0 & 4.4567 \cdot 10^{5} & 0 & 0\\0 & -1383.1 & -3724.1 & 0 & 1383.1 & -3724.1\\0 & 3724.1 & 6685.0 & 0 & -3724.1 & 13370.0\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}-41.66\\109.98\\83.006\\-18.327\\39.983\\-51.593\end{matrix}\right]
Matriz de transformación
\left[\begin{matrix}0.92848 & -0.37139 & 0 & 0 & 0 & 0\\0.37139 & 0.92848 & 0 & 0 & 0 & 0\\0 & 0 & 1.0 & 0 & 0 & 0\\0 & 0 & 0 & 0.92848 & -0.37139 & 0\\0 & 0 & 0 & 0.37139 & 0.92848 & 0\\0 & 0 & 0 & 0 & 0 & 1.0\end{matrix}\right]
Matriz de Rigidez en coordenadas Globales
\left[\begin{matrix}3.8439 \cdot 10^{5} & -1.532 \cdot 10^{5} & 1383.1 & -3.8439 \cdot 10^{5} & 1.532 \cdot 10^{5} & 1383.1\\-1.532 \cdot 10^{5} & 62664.0 & 3457.8 & 1.532 \cdot 10^{5} & -62664.0 & 3457.8\\1383.1 & 3457.8 & 13370.0 & -1383.1 & -3457.8 & 6685.0\\-3.8439 \cdot 10^{5} & 1.532 \cdot 10^{5} & -1383.1 & 3.8439 \cdot 10^{5} & -1.532 \cdot 10^{5} & -1383.1\\1.532 \cdot 10^{5} & -62664.0 & -3457.8 & -1.532 \cdot 10^{5} & 62664.0 & -3457.8\\1383.1 & 3457.8 & 6685.0 & -1383.1 & -3457.8 & 13370.0\end{matrix}\right]
Vector de empotramiento en globales
\left[\begin{matrix}2.1664\\117.59\\83.006\\-2.1664\\43.93\\-51.593\end{matrix}\right]
Calculo de los desplazamientos deconocidos
Sistema de ecuaciones
\left[\begin{matrix}1.5912 \cdot 10^{5} & 0 & 3.5072 \cdot 10^{5} & -3375.0 & 0 & -6750.0 & 0\\0 & 4.4013 \cdot 10^{6} & 0 & 0 & -6.0 \cdot 10^{5} & 0 & 0\\3.5072 \cdot 10^{5} & 0 & 1.1793 \cdot 10^{6} & 6750.0 & 0 & 9000.0 & 0\\-3375.0 & 0 & 6750.0 & 7.2937 \cdot 10^{5} & -39616.0 & 8986.9 & 853.81\\0 & -6.0 \cdot 10^{5} & 0 & -39616.0 & 7.0138 \cdot 10^{5} & 896.33 & -2561.4\\-6750.0 & 0 & 9000.0 & 8986.9 & 896.33 & 42754.0 & 5692.1\\0 & 0 & 0 & 853.81 & -2561.4 & 5692.1 & 11384.0\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}0\\0\\0\\2.7989\\343.53\\-149.05\\0\end{matrix}\right]
Solución del sistema de ecuaciones
\left[\begin{matrix}0.000671\\-7.82 \cdot 10^{-5}\\-0.000229\\-7.6 \cdot 10^{-5}\\-0.000574\\0.00395\\-0.0021\end{matrix}\right]
Calculo de las reacciones
\begin{tabular}{ll}
\toprule
{} & Reacciones \\
\midrule
FX\_1 & -11.11 kN \\
FY\_1 & 297.29 kN \\
M\_1 & 96.750 kN m \\
FX\_4 & 88.896 kN \\
FY\_4 & 286.39 kN \\
FX\_5 & -66.321 kN \\
FY\_5 & 54.593 kN \\
M\_5 & -27.292 kN m \\
\bottomrule
\end{tabular}
Campos de desplazamiento
Campos de desplazamiento Homogeneo A
{u^h}_A
- \frac{x}{63934}
{v^h}_A
- \frac{83 \sqrt[4]{\pi} \left(\left(- \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \cos{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right) \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} + \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} - \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)}\right)}{97380 \left(- \sin^{2}{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \sinh^{2}{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right)} - \frac{25 \left(2 \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} - \left(\cos{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right) \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} + \left(\cos{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right) \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)}\right)}{37234 \left(- \sin^{2}{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \sinh^{2}{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right)}
Campos de desplazamientos totales (suma homogeneo más empotrado)
u_A
- \frac{x}{63934}
v_A
- \frac{83 \sqrt[4]{\pi} \left(\left(- \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \cos{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right) \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} + \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} - \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)}\right)}{97380 \left(- \sin^{2}{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \sinh^{2}{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right)} - \frac{25 \left(2 \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} - \left(\cos{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right) \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} + \left(\cos{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \sin{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right) \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)}\right)}{37234 \left(- \sin^{2}{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)} + \sinh^{2}{\left(\frac{100915}{74996 \sqrt[4]{\pi}} \right)}\right)}Campos de desplazamiento Homogeneo B
{u^h}_B
- \frac{x}{8073} - \frac{7}{89507}
{v^h}_B
\frac{13 x^{3}}{62191} - \frac{41 x^{2}}{56005} - \frac{7 x}{30517} - \frac{25}{37234}
Campos de desplazamientos totales (suma homogeneo más empotrado)
u_B
- \frac{x}{8073} - \frac{7}{89507}
v_B
\frac{13 x^{3}}{62191} - \frac{41 x^{2}}{56005} - \frac{7 x}{30517} - \frac{25}{37234}Campos de desplazamiento Homogeneo C
{u^h}_C
- \frac{x}{24952}
{v^h}_C
\frac{36022130375 x^{3}}{715104008001984} - \frac{3449 \sqrt{10} x^{2}}{357552004000992} - \frac{299 x}{142572}
El elemento c posee dos campos de desplazamiento emportrados, ya que la carga externa no se encuentra distribuida en todo el elemento
Primer tramo
{{u^f}_C}^I
0
{{v^f}_C}^I
\frac{7 x^{3}}{19200} + \frac{68567 \sqrt{10} x^{3}}{487616000} - \frac{17 \sqrt{10} x^{2}}{14400} - \frac{3 x^{2}}{1280}
Campos de desplazamientos totales (suma homogeneo más empotrado)
{u_C}^I
- \frac{3 x}{77543}
{v_C}^I
\frac{9891237776413 x^{3}}{23836800266732800} + \frac{68567 \sqrt{10} x^{3}}{487616000} - \frac{63316501225859 \sqrt{10} x^{2}}{53632800600148800} - \frac{3 x^{2}}{1280} - \frac{299 x}{142572}
Segundo tramo
{{u^f}_C}^II
\frac{11111 x^{2}}{8888900000} - \frac{\sqrt{10} x}{71111} + \frac{5}{88889}
{{v^f}_C}^II
- \frac{11 x^{5}}{3600000} - \frac{3 x^{4}}{16000} + \frac{13 x^{3}}{57600} + \frac{434279 \sqrt{10} x^{3}}{487616000} - \frac{87 x^{2}}{6400} - \frac{13 \sqrt{10} x^{2}}{14400} - \frac{x}{480} + \frac{3 \sqrt{10} x}{400} - \frac{3}{160} + \frac{\sqrt{10}}{1000}
Campos de desplazamientos totales (suma homogeneo más empotrado)
{u_C}^II
\frac{11111 x^{2}}{8888900000} - \frac{\sqrt{10} x}{71111} - \frac{x}{26810} + \frac{5}{88889}
{v_C}^II
- \frac{11 x^{5}}{3600000} - \frac{3 x^{4}}{16000} + \frac{59225139654301 x^{3}}{214531202400595200} + \frac{434279 \sqrt{10} x^{3}}{487616000} - \frac{87 x^{2}}{6400} - \frac{48418501059151 \sqrt{10} x^{2}}{53632800600148800} - \frac{7947 x}{1900960} + \frac{3 \sqrt{10} x}{400} - \frac{3}{160} + \frac{\sqrt{10}}{1000}
Campos de desplazamiento Homogeneo D
{u^h}_D
- \frac{x}{37780} + \frac{\sqrt{29}}{37780}
{v^h}_D
\frac{1983839 x^{3}}{15385555832} - \frac{4022933 \sqrt{29} x^{2}}{15385555832} + \frac{349 x}{88408} - \frac{5 \sqrt{29}}{48008}
Campos de desplazamiento Empotrado D
{u^f}_D
- \frac{571 x^{2}}{9942900000} - \frac{x}{100000} + \frac{\sqrt{29} x}{100000}
{v^f}_D
\frac{62639 x^{5}}{11210806080} - \frac{7 x^{4}}{50112} + \frac{7 x^{3}}{8640} + \frac{60553 \sqrt{29} x^{3}}{216742752} - \frac{7 \sqrt{29} x^{2}}{4320} - \frac{20185 x^{2}}{4982592}
Campos de desplazamientos totales (suma homogeneo más empotrado)
u_D
- \frac{571 x^{2}}{9942900000} - \frac{6889 x}{188900000} + \frac{\sqrt{29} x}{100000} + \frac{\sqrt{29}}{37780}
v_D
\frac{62639 x^{5}}{11210806080} - \frac{7 x^{4}}{50112} + \frac{15604907473 x^{3}}{16616400298560} + \frac{60553 \sqrt{29} x^{3}}{216742752} - \frac{15634745173 \sqrt{29} x^{2}}{8308200149280} - \frac{20185 x^{2}}{4982592} + \frac{349 x}{88408} - \frac{5 \sqrt{29}}{48008}
Fuerzas Internas
Elemento A
Fuerza axial
P_A
- \frac{\sqrt{88549}}{2} - \frac{297}{2}
Momento flector
M_A
27.474 \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} + 27.474 \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} - 96.749 \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)}
Fuerza cortante
V_A
- 19.557 \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} + 19.557 \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} - 11.108 \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)}
Elemento B
Fuerza axial
P_B
- \frac{\sqrt{88549}}{2} - \frac{297}{2}
Momento flector
M_B
\frac{1614653 x}{71522} - \frac{2073779}{78687}
Fuerza cortante
V_B
- \frac{\sqrt{113362}}{29} - \frac{318}{29}
Elemento C
Primer tramo
Fuerza axial
{P_C}^I
- \frac{117}{2} - \frac{\sqrt{12409}}{2}
Momento flector
{M_C}^I
\frac{4136942369973563 x}{92310910734504} + \frac{243 \sqrt{10} x}{16} - \frac{980803424748557 \sqrt{10}}{23077727683626} - \frac{675}{8}
Fuerza cortante
{V_C}^I
- \frac{164}{7} - \frac{\sqrt{25727}}{7}
Segundo tramo
Fuerza axial
{P_C}^II
\frac{\sqrt{10} x^{3}}{20} + \frac{27 \sqrt{10} x^{2}}{40} + 6 x - \frac{135 \sqrt{10}}{4} - \frac{7506674}{85447}
Momento flector
{M_C}^II
- \frac{11 x^{3}}{10} - \frac{81 x^{2}}{2} + \frac{2752278708956003 x}{92310910734504} + \frac{1539 \sqrt{10} x}{16} - \frac{3915}{8} - \frac{750026147912297 \sqrt{10}}{23077727683626}
Fuerza cortante
{V_C}^II
\frac{33 x^{2}}{10} + 81 x - \frac{1539 \sqrt{10}}{16} + \frac{1639137}{98242}
Elemento D
Fuerza axial
P_D
- \frac{140 \sqrt{29} x^{3}}{841} - \frac{350 \sqrt{29} x^{2}}{841} - \frac{8 x}{29} - \frac{8470616}{97521} + \frac{350 \sqrt{29}}{29}
Momento flector
M_D
\frac{7830125 x^{3}}{3892641} - \frac{875 x^{2}}{29} + \frac{350812925911 x}{3458816962} + \frac{875 \sqrt{29} x}{29} - \frac{351483705365 \sqrt{29}}{5188225443} - \frac{875}{6}
Fuerza cortante
V_D
- \frac{7830125 x^{2}}{1297547} + \frac{1750 x}{29} - \frac{875 \sqrt{29}}{29} + \frac{3066927}{79507}
Tablas de resumen
Elemento A
\begin{tabular}{rrrr}
\toprule
\$x\_A\$ & \$P(\$x'\_A\$)\$ & \$V(\$x'\_A\$)\$ & \$M(\$x'\_A\$)\$ \\
\midrule
0.00000 & -297.28727 & -11.10766 & -96.74946 \\
0.55556 & -297.28727 & -11.12583 & -90.57601 \\
1.11111 & -297.28727 & -11.25068 & -84.36763 \\
1.66667 & -297.28727 & -11.58237 & -78.03691 \\
2.22222 & -297.28727 & -12.21390 & -71.44276 \\
2.77778 & -297.28727 & -13.23087 & -64.39448 \\
3.33333 & -297.28727 & -14.71104 & -56.65596 \\
3.88889 & -297.28727 & -16.72374 & -47.95020 \\
4.44444 & -297.28727 & -19.32887 & -37.96425 \\
5.00000 & -297.28727 & -22.57561 & -26.35479 \\
\bottomrule
\end{tabular}
Elemento B
\begin{tabular}{rrrr}
\toprule
\$x\_B\$ & \$P(\$x'\_B\$)\$ & \$V(\$x'\_B\$)\$ & \$M(\$x'\_B\$)\$ \\
\midrule
0.00000 & -297.28727 & -22.57561 & -26.35479 \\
0.44444 & -297.28727 & -22.57561 & -16.32118 \\
0.88889 & -297.28727 & -22.57561 & -6.28757 \\
1.33333 & -297.28727 & -22.57561 & 3.74603 \\
1.77778 & -297.28727 & -22.57561 & 13.77964 \\
2.22222 & -297.28727 & -22.57561 & 23.81324 \\
2.66667 & -297.28727 & -22.57561 & 33.84685 \\
3.11111 & -297.28727 & -22.57561 & 43.88046 \\
3.55556 & -297.28727 & -22.57561 & 53.91406 \\
4.00000 & -297.28727 & -22.57561 & 63.94767 \\
\bottomrule
\end{tabular}
Elemento C
\begin{tabular}{rrrr}
\toprule
\$x\_C\$ & \$P(\$x'\_C\$)\$ & \$V(\$x'\_C\$)\$ & \$M(\$x'\_C\$)\$ \\
\midrule
0.00000 & -114.19719 & -46.34241 & -71.72589 \\
0.70273 & -114.19719 & -46.34241 & -39.15977 \\
1.40546 & -114.19719 & -46.34241 & -6.59364 \\
2.10819 & -114.19719 & -46.34241 & 25.97248 \\
2.81091 & -114.19719 & -46.34241 & 58.53860 \\
3.51364 & -105.88320 & -21.40042 & 86.71202 \\
4.21637 & -89.62558 & 27.37242 & 84.52692 \\
4.91910 & -73.86179 & 74.66379 & 48.58829 \\
5.62183 & -58.59183 & 120.47368 & -20.06279 \\
6.32456 & -43.81569 & 164.80209 & -120.38523 \\
\bottomrule
\end{tabular}
Elemento D
\begin{tabular}{rrrr}
\toprule
\$x\_D\$ & \$P(\$x'\_C\$)\$ & \$V(\$x'\_C\$)\$ & \$M(\$x'\_C\$)\$ \\
\midrule
0.00000 & -21.86604 & -123.90912 & -133.69744 \\
0.59835 & -35.44481 & -89.96219 & -69.92777 \\
1.19670 & -47.29519 & -60.33624 & -25.17757 \\
1.79505 & -57.41717 & -35.03128 & 3.13863 \\
2.39341 & -65.81076 & -14.04731 & 17.60630 \\
2.99176 & -72.47595 & 2.61567 & 20.81092 \\
3.59011 & -77.41275 & 14.95766 & 15.33795 \\
4.18846 & -80.62115 & 22.97867 & 3.77286 \\
4.78681 & -82.10116 & 26.67869 & -11.29888 \\
5.38516 & -81.85277 & 26.05772 & -27.29180 \\
\bottomrule
\end{tabular}
Fuerza que el suelo ejerce sobre la viga
7.9068 \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} - 2.2454 \sin{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \cosh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} + 2.2454 \cos{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)} \sinh{\left(\frac{20183 x}{74996 \sqrt[4]{\pi}} \right)}
Elemento A
Matriz en coordenadas locales
\left[\begin{matrix}3.8013 \cdot 10^{6} & 0 & 0 & -3.8013 \cdot 10^{6} & 0 & 0\\0 & 1.5574 \cdot 10^{5} & 3.5747 \cdot 10^{5} & 0 & -1.3188 \cdot 10^{5} & 3.3761 \cdot 10^{5}\\0 & 3.5747 \cdot 10^{5} & 1.1613 \cdot 10^{6} & 0 & -3.3761 \cdot 10^{5} & 5.6646 \cdot 10^{5}\\-3.8013 \cdot 10^{6} & 0 & 0 & 3.8013 \cdot 10^{6} & 0 & 0\\0 & -1.3188 \cdot 10^{5} & -3.3761 \cdot 10^{5} & 0 & 1.5574 \cdot 10^{5} & -3.5747 \cdot 10^{5}\\0 & 3.3761 \cdot 10^{5} & 5.6646 \cdot 10^{5} & 0 & -3.5747 \cdot 10^{5} & 1.1613 \cdot 10^{6}\end{matrix}\right]
Vector de desplazamientos
\left[\begin{matrix}0\\0\\0\\-7.8206 \cdot 10^{-5}\\-0.00067143\\-0.00022938\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}0\\0\\0\\0\\0\\0\end{matrix}\right]
Resultados
\left[\begin{matrix}297.287\\11.1077\\96.7495\\-297.287\\-22.5756\\-26.3548\end{matrix}\right]
Elemento B
Matriz en coordenadas locales
\left[\begin{matrix}6.0 \cdot 10^{5} & 0 & 0 & -6.0 \cdot 10^{5} & 0 & 0\\0 & 3375.0 & 6750.0 & 0 & -3375.0 & 6750.0\\0 & 6750.0 & 18000.0 & 0 & -6750.0 & 9000.0\\-6.0 \cdot 10^{5} & 0 & 0 & 6.0 \cdot 10^{5} & 0 & 0\\0 & -3375.0 & -6750.0 & 0 & 3375.0 & -6750.0\\0 & 6750.0 & 9000.0 & 0 & -6750.0 & 18000.0\end{matrix}\right]
Vector de desplazamientos
\left[\begin{matrix}-7.8206 \cdot 10^{-5}\\-0.00067143\\-0.00022938\\-0.00057369\\7.5953 \cdot 10^{-5}\\0.0039476\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}0\\0\\0\\0\\0\\0\end{matrix}\right]
Resultados
\left[\begin{matrix}297.287\\22.5756\\26.3548\\-297.287\\-22.5756\\63.9477\end{matrix}\right]
Elemento C
Matriz en coordenadas locales
\left[\begin{matrix}3.7947 \cdot 10^{5} & 0 & 0 & -3.7947 \cdot 10^{5} & 0 & 0\\0 & 853.81 & 2700.0 & 0 & -853.81 & 2700.0\\0 & 2700.0 & 11384.0 & 0 & -2700.0 & 5692.1\\-3.7947 \cdot 10^{5} & 0 & 0 & 3.7947 \cdot 10^{5} & 0 & 0\\0 & -853.81 & -2700.0 & 0 & 853.81 & -2700.0\\0 & 2700.0 & 5692.1 & 0 & -2700.0 & 11384.0\end{matrix}\right]
Vector de desplazamientos
\left[\begin{matrix}0\\0\\-0.0020972\\-0.00025347\\-0.00052023\\0.0039476\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}78.715\\238.14\\244.7\\72.048\\214.14\\-232.05\end{matrix}\right]
Resultados
\left[\begin{matrix}174.9\\243.585\\244.702\\-24.137\\208.704\\-197.645\end{matrix}\right]
Elemento D
Matriz en coordenadas locales
\left[\begin{matrix}4.4567 \cdot 10^{5} & 0 & 0 & -4.4567 \cdot 10^{5} & 0 & 0\\0 & 1383.1 & 3724.1 & 0 & -1383.1 & 3724.1\\0 & 3724.1 & 13370.0 & 0 & -3724.1 & 6685.0\\-4.4567 \cdot 10^{5} & 0 & 0 & 4.4567 \cdot 10^{5} & 0 & 0\\0 & -1383.1 & -3724.1 & 0 & 1383.1 & -3724.1\\0 & 3724.1 & 6685.0 & 0 & -3724.1 & 13370.0\end{matrix}\right]
Vector de desplazamientos
\left[\begin{matrix}0.00014254\\-0.00056086\\0.0039476\\0\\0\\0\end{matrix}\right]
Vector de empotramiento
\left[\begin{matrix}-41.66\\109.98\\83.006\\-18.327\\39.983\\-51.593\end{matrix}\right]
Resultados
\left[\begin{matrix}21.866\\123.909\\133.697\\-81.8528\\26.0577\\-27.2918\end{matrix}\right]