Skip to content

SaltedSlark/Wasserstein_Autoencoders

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

This is the implementation of Wasserstein Auto-Encoders paper in PyTorch.

For simplicity, I just use MNIST data with MLP architecture instead of DC-GAN for the encoder/decoder/discriminator, but you can replace them easily.

Requirement

  • python 3
  • PyTorch >= 0.3
  • torchvision
  • numpy

Train

  • To train an adversarial autoencoder:
python aae.py
  • To train a WAE-GAN:
python wae_gan.py
  • To train a WAE-MMD:
python wae_mmd.py

About

PyTorch implementation of Wasserstein Auto-Encoders

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%