DS2L-SOM is clustering algorithm based on Self Organizing Maps (SOM).
DSL2-SOM follows the scikit-learn API. We can train on data in the form (n_samples, n_features)
.
from ds2lsom import DS2LSOM
clusterer = DS2LSOM()
clusterer.fit(data)
labels = clusterer.predict(data)
git clone https://github.com/SandroMartens/ds2l-som.git
cd ds2l_som
pip install -e .
- Pandas
- Numpy
- NetworkX
- MiniSom
- scikit-learn
ToDo:
- Examples
- A Local Density-based Simultaneous Two-level Algorithm for Topographic Clustering, Guénaël Cabanes and Younès Bennani, 2008
- Enriched topological learning for cluster detection and visualization, Guénaël Cabanes, Younès Bennani and Dominique Fresneau, 2012