-
Notifications
You must be signed in to change notification settings - Fork 5
/
flask_app.py
63 lines (52 loc) · 1.87 KB
/
flask_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from flask import Flask, render_template, request
import nltk
import json
import random
from nltk.stem import WordNetLemmatizer
import pickle
import numpy as np
from keras.models import load_model
model = load_model('chatbot_model_v2.h5')
lemmatizer = WordNetLemmatizer()
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words_v2.pkl','rb'))
classes = pickle.load(open('classes_v2.pkl','rb'))
app = Flask(__name__)
@app.route("/")
def home():
return render_template("home.html")
@app.route("/pvppassistant")
def get_bot_response(show_details=True):
userText = request.args.get('msg')
# tokenize the pattern - split words into array
sentence_words = nltk.word_tokenize(userText)
# stem each word - create short form for word
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
# bag of words - matrix of N words, vocabulary matrix
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
p = np.array(bag)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
ints = return_list
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if(i['tag']== tag):
result = random.choice(i['responses'])
break
return str(result.lower())
if __name__ == "__main__":
app.run()