-
Notifications
You must be signed in to change notification settings - Fork 0
/
logic.py
263 lines (195 loc) · 7.72 KB
/
logic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import itertools
class Sentence():
def evaluate(self, model):
"""Evaluates the logical sentence."""
raise Exception("nothing to evaluate")
def formula(self):
"""Returns string formula representing logical sentence."""
return ""
def symbols(self):
"""Returns a set of all symbols in the logical sentence."""
return set()
@classmethod
def validate(cls, sentence):
if not isinstance(sentence, Sentence):
raise TypeError("must be a logical sentence")
@classmethod
def parenthesize(cls, s):
"""Parenthesizes an expression if not already parenthesized."""
def balanced(s):
"""Checks if a string has balanced parentheses."""
count = 0
for c in s:
if c == "(":
count += 1
elif c == ")":
if count <= 0:
return False
count -= 1
return count == 0
if not len(s) or s.isalpha() or (
s[0] == "(" and s[-1] == ")" and balanced(s[1:-1])
):
return s
else:
return f"({s})"
class Symbol(Sentence):
def __init__(self, name):
self.name = name
def __eq__(self, other):
return isinstance(other, Symbol) and self.name == other.name
def __hash__(self):
return hash(("symbol", self.name))
def __repr__(self):
return self.name
def evaluate(self, model):
try:
return bool(model[self.name])
except KeyError:
raise Exception(f"variable {self.name} not in model")
def formula(self):
return self.name
def symbols(self):
return {self.name}
class Not(Sentence):
def __init__(self, operand):
Sentence.validate(operand)
self.operand = operand
def __eq__(self, other):
return isinstance(other, Not) and self.operand == other.operand
def __hash__(self):
return hash(("not", hash(self.operand)))
def __repr__(self):
return f"Not({self.operand})"
def evaluate(self, model):
return not self.operand.evaluate(model)
def formula(self):
return "¬" + Sentence.parenthesize(self.operand.formula())
def symbols(self):
return self.operand.symbols()
class And(Sentence):
def __init__(self, *conjuncts):
for conjunct in conjuncts:
Sentence.validate(conjunct)
self.conjuncts = list(conjuncts)
def __eq__(self, other):
return isinstance(other, And) and self.conjuncts == other.conjuncts
def __hash__(self):
return hash(
("and", tuple(hash(conjunct) for conjunct in self.conjuncts))
)
def __repr__(self):
conjunctions = ", ".join(
[str(conjunct) for conjunct in self.conjuncts]
)
return f"And({conjunctions})"
def add(self, conjunct):
Sentence.validate(conjunct)
self.conjuncts.append(conjunct)
def evaluate(self, model):
return all(conjunct.evaluate(model) for conjunct in self.conjuncts)
def formula(self):
if len(self.conjuncts) == 1:
return self.conjuncts[0].formula()
return " ∧ ".join([Sentence.parenthesize(conjunct.formula())
for conjunct in self.conjuncts])
def symbols(self):
return set.union(*[conjunct.symbols() for conjunct in self.conjuncts])
class Or(Sentence):
def __init__(self, *disjuncts):
for disjunct in disjuncts:
Sentence.validate(disjunct)
self.disjuncts = list(disjuncts)
def __eq__(self, other):
return isinstance(other, Or) and self.disjuncts == other.disjuncts
def __hash__(self):
return hash(
("or", tuple(hash(disjunct) for disjunct in self.disjuncts))
)
def __repr__(self):
disjuncts = ", ".join([str(disjunct) for disjunct in self.disjuncts])
return f"Or({disjuncts})"
def evaluate(self, model):
return any(disjunct.evaluate(model) for disjunct in self.disjuncts)
def formula(self):
if len(self.disjuncts) == 1:
return self.disjuncts[0].formula()
return " ∨ ".join([Sentence.parenthesize(disjunct.formula())
for disjunct in self.disjuncts])
def symbols(self):
return set.union(*[disjunct.symbols() for disjunct in self.disjuncts])
class Implication(Sentence):
def __init__(self, antecedent, consequent):
Sentence.validate(antecedent)
Sentence.validate(consequent)
self.antecedent = antecedent
self.consequent = consequent
def __eq__(self, other):
return (isinstance(other, Implication)
and self.antecedent == other.antecedent
and self.consequent == other.consequent)
def __hash__(self):
return hash(("implies", hash(self.antecedent), hash(self.consequent)))
def __repr__(self):
return f"Implication({self.antecedent}, {self.consequent})"
def evaluate(self, model):
return ((not self.antecedent.evaluate(model))
or self.consequent.evaluate(model))
def formula(self):
antecedent = Sentence.parenthesize(self.antecedent.formula())
consequent = Sentence.parenthesize(self.consequent.formula())
return f"{antecedent} => {consequent}"
def symbols(self):
return set.union(self.antecedent.symbols(), self.consequent.symbols())
class Biconditional(Sentence):
def __init__(self, left, right):
Sentence.validate(left)
Sentence.validate(right)
self.left = left
self.right = right
def __eq__(self, other):
return (isinstance(other, Biconditional)
and self.left == other.left
and self.right == other.right)
def __hash__(self):
return hash(("biconditional", hash(self.left), hash(self.right)))
def __repr__(self):
return f"Biconditional({self.left}, {self.right})"
def evaluate(self, model):
return ((self.left.evaluate(model)
and self.right.evaluate(model))
or (not self.left.evaluate(model)
and not self.right.evaluate(model)))
def formula(self):
left = Sentence.parenthesize(str(self.left))
right = Sentence.parenthesize(str(self.right))
return f"{left} <=> {right}"
def symbols(self):
return set.union(self.left.symbols(), self.right.symbols())
def model_check(knowledge, query):
"""Checks if knowledge base entails query."""
def check_all(knowledge, query, symbols, model):
"""Checks if knowledge base entails query, given a particular model."""
# If model has an assignment for each symbol
if not symbols:
# If knowledge base is true in model, then query must also be true
if knowledge.evaluate(model):
return query.evaluate(model)
return True
else:
# Choose one of the remaining unused symbols
remaining = symbols.copy()
p = remaining.pop()
# Create a model where the symbol is true
model_true = model.copy()
model_true[p] = True
# Create a model where the symbol is false
model_false = model.copy()
model_false[p] = False
# Ensure entailment holds in both models
return (check_all(knowledge, query, remaining, model_true) and
check_all(knowledge, query, remaining, model_false))
# Get all symbols in both knowledge and query
symbols = set.union(knowledge.symbols(), query.symbols())
# Check that knowledge entails query
return check_all(knowledge, query, symbols, dict())