Skip to content

ScaleMind-C9308A/txt2grasp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Language Driven Object Grasping via Feature Augmentation

Abstract

This study tackles the problem of robotic object grasping through natural language instructions. First, a multi-modal network is proposed to combine both the visual and linguistic guidance information to localize the oriented object. Second, a feature augmentation is applied to enrich the information, to avoid overfitting. The overall experiments are conducted to evaluate the proposed method.

Setup

Note that this repo is optimized for running on Google Colab

!git clone https://github.com/KhoiDOO/txt2grasp.git
%cd /content/txt2grasp
!pip install alive_progress wandb

If you run locally

git clone https://github.com/KhoiDOO/txt2grasp.git
cd /path/to/txt2grasp
python3 -m venv .env
source .env/bin/activate
python -m pip install -U pip
pip install -r requirements.txt

Training

All training parameters can be adjusted using main.py

python main.py

Example

python main.py --bs 64 --epoch 100 --log --aug

To toggle training with feature augmentation

python main.py --bs 64 --epoch 100 --log --aug --fa

Wandb Logging

This repo allow logging to wandb. To toggle using argument --log

If you find this repository helpful, please give a star 🌟 🌟 🌟

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages