-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
270 lines (222 loc) · 12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
from tqdm import trange
import torch
import matplotlib.pyplot as plt
from pyro import distributions as dist
from model import OptLoss
from copy import deepcopy
import lhsmdu
import matplotlib.patches as patches
my_cmap = plt.cm.jet
my_cmap.set_under('white')
def sample_noise(N, NOISE_DIM):
return np.random.normal(size=(N, NOISE_DIM)).astype(np.float32)
def iterate_minibatches(X, batchsize, y=None):
perm = np.random.permutation(X.shape[0])
for start in range(0, X.shape[0], batchsize):
end = min(start + batchsize, X.shape[0])
if y is None:
yield X[perm[start:end]]
else:
yield X[perm[start:end]], y[perm[start:end]]
def generate_data(y_sampler, n_samples, mu_range=(-5, 5), mu_dim=1, x_dim=1):
# mus = torch.empty([n_samples, mu_dim]).uniform_(*mu_range).to(device)
mus = torch.randint(*mu_range, [n_samples, mu_dim], dtype=torch.float32) # .to(device)
xs = y_sampler.x_dist.sample(torch.Size([n_samples, x_dim])) # .to(device)
y_sampler.make_condition_sample({'mu': mus, 'X':xs})
data = y_sampler.condition_sample().detach() # .to(device)
return data.reshape(-1, 1), torch.cat([mus, xs], dim=1)
def generate_local_data(y_sampler, n_samples_per_dim, step, current_psi, x_dim=1, std=0.1):
xs = y_sampler.x_dist.sample(torch.Size([n_samples_per_dim * 2 * current_psi.shape[1] + n_samples_per_dim, x_dim])) # .to(device)
mus = torch.empty((xs.shape[0], current_psi.shape[1])) # .to(device)
iterator = 0
for dim in range(current_psi.shape[1]):
for dir_step in [-step, step]:
random_mask = torch.torch.randn_like(current_psi)
random_mask[0, dim] = 0
new_psi = current_psi + random_mask * std
new_psi[0, dim] += dir_step
mus[iterator:
iterator + n_samples_per_dim, :] = new_psi.repeat(n_samples_per_dim, 1)
iterator += n_samples_per_dim
mus[iterator: iterator + n_samples_per_dim, :] = current_psi.repeat(n_samples_per_dim, 1).clone().detach()
y_sampler.make_condition_sample({'mu': mus, 'X': xs})
data = y_sampler.condition_sample().detach().to(device)
return data.reshape(-1, 1), torch.cat([mus, xs], dim=1)
def generate_local_data_lhs(y_sampler, n_samples_per_dim, step, current_psi, x_dim=1, n_samples=2):
xs = y_sampler.x_dist.sample(torch.Size([n_samples_per_dim * n_samples, x_dim])) # .to(device)
mus = torch.empty((len(xs), len(current_psi))) # .to(device)
mus = torch.tensor(lhsmdu.sample(len(current_psi),
n_samples,
randomSeed=np.random.randint(1e5)).T).float() # .to(device)
mus = step * (mus * 2 - 1) + current_psi # .to(device)
mus = mus.repeat(1, n_samples_per_dim).reshape(-1, len(current_psi))
y_sampler.make_condition_sample({'mu': mus, 'X': xs})
data = y_sampler.condition_sample().detach() # .to(device)
return data.reshape(-1, 1), torch.cat([mus, xs], dim=1)
class DistPlotter(object):
def __init__(self, y_sampler, generator, noise, device, mu_dim=1, x_dim=1):
self.y_sampler = y_sampler
self.generator = generator
self.fixed_noise = noise
self.device = device
self.mu_dim = mu_dim
self.x_dim = x_dim
def draw_conditional_samples(self, mu_range):
f = plt.figure(figsize=(21, 16))
mu = dist.Uniform(*mu_range).sample([16, self.mu_dim])
x = self.y_sampler.x_dist.sample([16, self.x_dim])
for index in range(16):
plt.subplot(4, 4, index + 1)
mu_s = mu[index, :].repeat(len(self.fixed_noise), 1).to(self.device)
x_s = x[index, :].repeat(len(self.fixed_noise), 1).to(self.device)
self.y_sampler.make_condition_sample({'mu': mu_s, 'X':x_s})
data = self.y_sampler.condition_sample().detach().cpu().numpy()
plt.hist(data, bins=100, density=True, label='true');
plt.hist(self.generator(self.fixed_noise, torch.cat([mu_s, x_s], dim=1)).detach().cpu().numpy(),
bins=100, color='g', density=True, alpha=0.5, label='gan');
plt.grid()
plt.legend()
plt.ylabel("x={}".format(x[index, :].cpu().numpy()), fontsize=15)
plt.title("mu={}".format(mu[index, :].cpu().numpy()), fontsize=15)
return f
def draw_mu_samples(self, mu_range, noise_size=1000, n_samples=1000):
f = plt.figure(figsize=(21, 16))
mu = dist.Uniform(*mu_range).sample([16, self.mu_dim])
for index in range(16):
plt.subplot(4, 4, index + 1)
noise = torch.Tensor(sample_noise(self.fixed_noise.shape[0], self.fixed_noise.shape[1])).to(self.device)
mu_s = mu[index, :].repeat(self.fixed_noise.shape[0], 1).to(self.device)
x_s = self.y_sampler.x_dist.sample([len(mu_s), self.x_dim]).to(self.device)
self.y_sampler.make_condition_sample({'mu': mu_s, 'X':x_s})
plt.hist(self.y_sampler.condition_sample().cpu().numpy(), bins=100, density=True, label='true');
plt.hist(self.generator(noise, torch.cat([mu_s, x_s], dim=1)).detach().cpu().numpy(),
bins=100, color='g', density=True, alpha=0.5, label='gan');
plt.grid()
plt.legend()
plt.title("mu={}".format(mu[index, :].cpu().numpy()), fontsize=15);
return f
def draw_X_samples(self, x_range):
f = plt.figure(figsize=(21,16))
x = dist.Uniform(*x_range).sample([12, self.x_dim])
for index in range(12):
plt.subplot(4,3, index + 1)
x_s = x[index, :].repeat(len(self.fixed_noise), 1).to(self.device)
mu_s = self.y_sampler.mu_dist.sample(torch.Size([len(x_s), self.mu_dim])).to(self.device)
self.y_sampler.make_condition_sample({'mu': mu_s, 'X':x_s})
plt.hist(self.y_sampler.condition_sample().cpu().numpy(), bins=100, density=True, label='true');
plt.hist(self.generator(self.fixed_noise, torch.cat([mu_s,x_s],dim=1)).detach().cpu().numpy(),
bins=100, color='g', density=True, alpha=0.5, label='gan');
plt.grid()
plt.legend()
plt.title("x={}".format(x[index, :].cpu().numpy()), fontsize=15)
return f
def draw_mu_2d_samples(self, mu_range, noise_size=1000):
my_cmap = plt.cm.jet
my_cmap.set_under('white')
mu = dist.Uniform(*mu_range).sample([5000, 2]).to(self.device)
y = np.zeros([len(mu), 1])
for i in range(len(mu)):
noise = torch.Tensor(sample_noise(noise_size, self.fixed_noise.shape[1])).to(self.device)
mu_r = mu[i, :].reshape(1,-1).repeat(noise_size, 1).to(self.device)
x_r = self.y_sampler.x_dist.sample(torch.Size([len(mu_r), 1])).to(self.device)
y[i, 0] = self.generator(noise, torch.cat([mu_r,x_r],dim=1)).mean().item()
f = plt.figure(figsize=(12,6))
mu = mu.cpu().numpy()
plt.scatter(mu[:,0], mu[:, 1], c=y[:,0], cmap=my_cmap)
plt.colorbar()
return f
def plot_means_diff(self, mu_range, x_range):
means_diff = []
for index, mu in enumerate(torch.arange(*mu_range, 1)):
t_means = []
g_means = []
for x in torch.arange(*x_range, 0.5):
# plt.subplot(5, 4, index + 1)
mu_s = mu.float().reshape(-1,1).repeat(self.fixed_noise.shape[0], 1).to(self.device)
noise = torch.Tensor(sample_noise(self.fixed_noise.shape[0], self.fixed_noise.shape[1])).to(self.device)
x_s = x.float().reshape(-1,1).repeat(self.fixed_noise.shape[0], 1).to(self.device)
y_samples = self.generator(noise, torch.cat([mu_s, x_s], dim=1)).cpu().detach().numpy()
self.y_sampler.make_condition_sample({'mu': mu_s, 'X':x_s})
t_means.append(np.mean(y_samples))
g_means.append(self.y_sampler.condition_sample().cpu().numpy().mean())
if index == 10:
f = plt.figure(figsize=(12,6))
plt.scatter(np.arange(*x_range, 0.5), t_means, label='g')
plt.scatter(np.arange(*x_range, 0.5), g_means, label='t')
plt.legend()
plt.grid()
means_diff.append((np.array(g_means) - np.array(t_means)).mean())
g = plt.figure(figsize=(12,6))
plt.scatter(np.arange(*mu_range, 1), means_diff)
plt.xlabel(f"$\mu$", fontsize=19)
plt.ylabel("means_diff")
plt.grid()
return f, g
def draw_grads_and_losses(self, current_psi, psi_size=2000, average_size=1000, step=1):
psi_range = (current_psi - 3 * step, current_psi + 3 * step)
psi_grid = dist.Uniform(*psi_range).sample([psi_size]).to(self.device)
x = self.y_sampler.x_dist.sample([average_size * psi_size, 1]).to(self.device)
psi = psi_grid.repeat(1, average_size).view(-1, 2)
psi.requires_grad = True
self.y_sampler.make_condition_sample({"mu": psi, "X": x})
data_gen = self.y_sampler.condition_sample()
true_loss = OptLoss.SigmoidLoss(data_gen, 5, 10).view(-1, average_size).mean(dim=1)
true_loss.sum().backward(retain_graph=True)
true_grads = psi.grad.view(-1, 1).view(psi_size, average_size, 2).mean(dim=1)
true_grads = true_grads.detach().cpu().numpy()
psi.grad.zero_()
data_gen = self.generator(self.fixed_noise, torch.cat([psi, x], dim=1))
#data_gen = self.generator(torch.cat([psi, x], dim=1))
gan_loss = OptLoss.SigmoidLoss(data_gen, 5, 10).view(-1, average_size).mean(dim=1)
gan_loss.sum().backward(retain_graph=False)
gan_grads = psi.grad.view(-1, 1).view(psi_size, average_size, 2).mean(dim=1)
gan_grads = gan_grads.detach().cpu().numpy()
psi.grad.zero_()
f = plt.figure(figsize=(16,8))
plt.subplot(1,2,1)
plt.quiver(psi_grid[:, 0].cpu().detach().cpu().numpy(),
psi_grid[:, 1].cpu().detach().cpu().numpy(),
-true_grads[:, 0],
-true_grads[:, 1],
np.linalg.norm(true_grads,axis=1),
cmap=my_cmap)
plt.colorbar()
plt.xlabel(f"$\psi_1$", fontsize=19)
plt.ylabel(f"$\psi_2$", fontsize=19)
plt.title("True grads", fontsize=15)
plt.subplot(1,2,2)
plt.quiver(psi_grid[:, 0].cpu().detach().cpu().numpy(),
psi_grid[:, 1].cpu().detach().cpu().numpy(),
-gan_grads[:, 0],
-gan_grads[:, 1],
np.linalg.norm(gan_grads,axis=1),
cmap=my_cmap)
plt.colorbar()
plt.xlabel(f"$\psi_1$", fontsize=19)
plt.ylabel(f"$\psi_2$", fontsize=19)
plt.title("GAN grads", fontsize=15)
g = plt.figure(figsize=(16, 8))
ax = plt.subplot(1,2,1)
plt.scatter(psi_grid[:, 0].cpu().detach().cpu().numpy(),
psi_grid[:,1].cpu().detach().cpu().numpy(),
c=true_loss.cpu().detach().numpy(),
cmap=my_cmap)
plt.colorbar()
plt.xlabel(f"$\psi_1$", fontsize=19)
plt.ylabel(f"$\psi_2$", fontsize=19)
plt.title("True loss", fontsize=15)
rect = patches.Rectangle(current_psi - step, step * 2, step * 2,linewidth=3,edgecolor='black',facecolor='none')
ax.add_patch(rect)
ax = plt.subplot(1,2,2)
plt.scatter(psi_grid[:, 0].cpu().detach().cpu().numpy(),
psi_grid[:,1].cpu().detach().cpu().numpy(),
c=gan_loss.cpu().detach().numpy(),
cmap=my_cmap)
plt.colorbar()
plt.xlabel(f"$\psi_1$", fontsize=19)
plt.ylabel(f"$\psi_2$", fontsize=19)
plt.title("GAN loss", fontsize=15)
rect = patches.Rectangle(current_psi - step, step * 2, step * 2,linewidth=3,edgecolor='black',facecolor='none')
ax.add_patch(rect)
return f, g