Skip to content

Latest commit

 

History

History
23 lines (14 loc) · 1.63 KB

README.md

File metadata and controls

23 lines (14 loc) · 1.63 KB

SCR-CLR7r

Microsoft Windows screensaver, simulating and displaying the principle of bivariate regression or correlation (Pearson, 1904, 1905)

$$r_{xy}=\frac{\overline{xy}-(\overline x ⋅\overline y)}{n⋅ \sigma_x⋅\sigma_y},$$

as part of the SCHRAUSSER-MAT tool compilation (c.f. Schrausser, 2022, p. 38).

In context of the historical development of the correlation coefficient see also Bravais (1844) and Galton (1877).

References

Bravais, A. (1844). Analyse Mathematique. Sur les probabilités des erreurs de situation d’un point. Paris: Imprimerie Royale. https://books.google.com/books/about/Analyse_math%C3%A9matique_sur_les_probabilit.html?id=7g_hAQAACAAJ.

Galton, F. (1877). Typical Laws of Heredity 1. Nature 15: 492–95. https://doi.org/10.1038/015492a0.

Pearson, K. (1904). Mathematical contributions to the theory of evolution. XIII. On the Theory of Contingency and its Relation to Association and Normal Correlation. Drapers’ Company research memoirs. Biometric Series, I. Department of Applied Mathematics. University College, University of London: Dulau & Co. https://openlibrary.org/books/OL24168960M.

———. (1905). Mathematical contributions to the theory of evolution. XIV. On the general theory of skew correlation and non-linear regression. Drapers’ Company research memoirs. Biometric Series, II. Department of Applied Mathematics. University College, University of London: Dulau & Co. https://openlibrary.org/books/OL6555066M.

Schrausser, D. G. (2022). Mathematical-Statistical Algorithm Interpreter, SCHRAUSSER-MAT: Function Index, Manual. Handbooks. Academia. https://doi.org/10.13140/RG.2.2.28314.52164.