-
Notifications
You must be signed in to change notification settings - Fork 52
/
nonportable.py
executable file
·970 lines (709 loc) · 27.4 KB
/
nonportable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
"""
Author: Justin Cappos
Start Date: July 1st, 2008
Description:
Handles exiting and killing all threads, tracking CPU / Mem usage, etc.
"""
import threading
import os
import time
# needed for sys.stderr and windows Popen hackery
import sys
# needed for signal numbers
import signal
# needed for harshexit
import harshexit
# print useful info when exiting...
import tracebackrepy
# used to query status, etc.
# This may fail on Windows CE
try:
import subprocess
mobile_no_subprocess = False
except ImportError:
# Set flag to avoid using subprocess
mobile_no_subprocess = True
# used for socket.error
import socket
# need for status retrieval
import statusstorage
# Get constants
import repy_constants
# Get access to the status interface so we can start it
import nmstatusinterface
# This allows us to meter resource use
import nanny
# This is used for IPC
import marshal
# This will fail on non-windows systems
try:
import windows_api as windows_api
except:
windows_api = None
# Armon: This is a place holder for the module that will be imported later
os_api = None
# Armon: See additional imports at the bottom of the file
class UnsupportedSystemException(Exception):
pass
################### Publicly visible functions #######################
# check the disk space used by a dir.
def compute_disk_use(dirname):
# Convert path to absolute
dirname = os.path.abspath(dirname)
diskused = 0
for filename in os.listdir(dirname):
try:
diskused = diskused + os.path.getsize(os.path.join(dirname, filename))
except IOError: # They likely deleted the file in the meantime...
pass
except OSError: # They likely deleted the file in the meantime...
pass
# charge an extra 4K for each file to prevent lots of little files from
# using up the disk. I'm doing this outside of the except clause in
# the failure to get the size wasn't related to deletion
diskused = diskused + 4096
return diskused
# prepare a socket so it behaves how we want
def preparesocket(socketobject):
if ostype == 'Windows':
# we need to set a timeout because on rare occasions Windows will block
# on recvmess with a bad socket. This prevents it from locking the system.
# We use select, so the timeout should never be actually used.
# The actual value doesn't seem to matter, so I'll use 100 years
socketobject.settimeout(60*60*24*365*100)
elif ostype == 'Linux' or ostype == 'Darwin':
# Linux seems not to care if we set the timeout, Mac goes nuts and refuses
# to let you send from a socket you're receiving on (why?)
pass
else:
raise UnsupportedSystemException, "Unsupported system type: '"+osrealtype+"' (alias: "+ostype+")"
# Armon: Also launches the nmstatusinterface thread.
# This will result in an internal thread on Windows
# and a thread on the external process for *NIX
def monitor_cpu_disk_and_mem():
if ostype == 'Linux' or ostype == 'Darwin':
# Startup a CPU monitoring thread/process
do_forked_resource_monitor()
elif ostype == 'Windows':
# Now we set up a cpu nanny...
WinCPUNannyThread().start()
# Launch mem./disk resource nanny
WindowsNannyThread().start()
# Start the nmstatusinterface. Windows means repy isn't run in an external
# process, so pass None instead of a process id.
nmstatusinterface.launch(None)
else:
raise UnsupportedSystemException, "Unsupported system type: '"+osrealtype+"' (alias: "+ostype+")"
# Elapsed time
elapsedtime = 0
# Store the uptime of the system when we first get loaded
starttime = 0
last_uptime = 0
# Timestamp from our starting point
last_timestamp = time.time()
# This is our uptime granularity
granularity = 1
# This ensures only one thread calling getruntime at any given time
runtimelock = threading.Lock()
def getruntime():
"""
<Purpose>
Return the amount of time the program has been running. This is in
wall clock time. This function is not guaranteed to always return
increasing values due to NTP, etc.
<Arguments>
None
<Exceptions>
None.
<Side Effects>
None
<Remarks>
By default this will have the same granularity as the system clock. However, if time
goes backward due to NTP or other issues, getruntime falls back to system uptime.
This has much lower granularity, and varies by each system.
<Returns>
The elapsed time as float
"""
global starttime, last_uptime, last_timestamp, elapsedtime, granularity, runtimelock
# Get the lock
runtimelock.acquire()
# Check if Linux or BSD/Mac
if ostype in ["Linux", "Darwin"]:
uptime = os_api.get_system_uptime()
# Check if time is going backward
if uptime < last_uptime:
# If the difference is less than 1 second, that is okay, since
# The boot time is only precise to 1 second
if (last_uptime - uptime) > 1:
raise EnvironmentError, "Uptime is going backwards!"
else:
# Use the last uptime
uptime = last_uptime
# No change in uptime
diff_uptime = 0
else:
# Current uptime, minus the last uptime
diff_uptime = uptime - last_uptime
# Update last uptime
last_uptime = uptime
# Check for windows
elif ostype in ["Windows"]:
# Release the lock
runtimelock.release()
# Time.clock returns elapsedtime since the first call to it, so this works for us
return time.clock()
# Who knows...
else:
raise EnvironmentError, "Unsupported Platform!"
# Current uptime minus start time
runtime = uptime - starttime
# Get runtime from time.time
current_time = time.time()
# Current time, minus the last time
diff_time = current_time - last_timestamp
# Update the last_timestamp
last_timestamp = current_time
# Is time going backward?
if diff_time < 0.0:
# Add in the change in uptime
elapsedtime += diff_uptime
# Lets check if time.time is too skewed
else:
skew = abs(elapsedtime + diff_time - runtime)
# If the skew is too great, use uptime instead of time.time()
if skew < granularity:
elapsedtime += diff_time
else:
elapsedtime += diff_uptime
# Release the lock
runtimelock.release()
# Return the new elapsedtime
return elapsedtime
# This lock is used to serialize calls to get_resources
get_resources_lock = threading.Lock()
# Cache the disk used from the external process
cached_disk_used = 0L
# This array holds the times that repy was stopped.
# It is an array of tuples, of the form (time, amount)
# where time is when repy was stopped (from getruntime()) and amount
# is the stop time in seconds. The last process_stopped_max_entries are retained
process_stopped_timeline = []
process_stopped_max_entries = 100
# Method to expose resource limits and usage
def get_resources():
"""
<Purpose>
Returns the resource utilization limits as well
as the current resource utilization.
<Arguments>
None.
<Returns>
A tuple of dictionaries and an array (limits, usage, stoptimes).
Limits is the dictionary which maps the resource name
to its maximum limit.
Usage is the dictionary which maps the resource name
to its current usage.
Stoptimes is an array of tuples with the times which the Repy process
was stopped and for how long, due to CPU over-use.
Each entry in the array is a tuple (TOS, Sleep Time) where TOS is the
time of stop (respective to getruntime()) and Sleep Time is how long the
repy process was suspended.
The stop times array holds a fixed number of the last stop times.
Currently, it holds the last 100 stop times.
"""
# Acquire the lock...
get_resources_lock.acquire()
# ...but always release it
try:
# Construct the dictionaries as copies from nanny
(limits,usage) = nanny.get_resource_information()
# Calculate all the usage's
pid = os.getpid()
# Get CPU and memory, this is thread specific
if ostype in ["Linux", "Darwin"]:
# Get CPU first, then memory
usage["cpu"] = os_api.get_process_cpu_time(pid)
# This uses the cached PID data from the CPU check
usage["memory"] = os_api.get_process_rss()
# Get the thread specific CPU usage
usage["threadcpu"] = os_api.get_current_thread_cpu_time()
# Windows Specific versions
elif ostype in ["Windows"]:
# Get the CPU time
usage["cpu"] = windows_api.get_process_cpu_time(pid)
# Get the memory, use the resident set size
usage["memory"] = windows_api.process_memory_info(pid)['WorkingSetSize']
# Get thread-level CPU
usage["threadcpu"] = windows_api.get_current_thread_cpu_time()
# Unknown OS
else:
raise EnvironmentError("Unsupported Platform!")
# Use the cached disk used amount
usage["diskused"] = cached_disk_used
finally:
# Release the lock
get_resources_lock.release()
# Copy the stop times
stoptimes = process_stopped_timeline[:]
# Return the dictionaries and the stoptimes
return (limits,usage,stoptimes)
################### Windows specific functions #######################
class WindowsNannyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self,name="NannyThread")
def run(self):
# How often the memory will be checked (seconds)
memory_check_interval = repy_constants.CPU_POLLING_FREQ_WIN
# The ratio of the disk polling time to memory polling time.
disk_to_memory_ratio = int(repy_constants.DISK_POLLING_HDD / memory_check_interval)
# Which cycle number we're on
counter = 0
# Elevate our priority, above normal is higher than the usercode, and is enough for disk/mem
windows_api.set_current_thread_priority(windows_api.THREAD_PRIORITY_ABOVE_NORMAL)
# need my pid to get a process handle...
mypid = os.getpid()
# run forever (only exit if an error occurs)
while True:
try:
# Increment the interval counter
counter += 1
# Check memory use, get the WorkingSetSize or RSS
memused = windows_api.process_memory_info(mypid)['WorkingSetSize']
if memused > nanny.get_resource_limit("memory"):
# We will be killed by the other thread...
raise Exception, "Memory use '"+str(memused)+"' over limit '"+str(nanny.get_resource_limit("memory"))+"'"
# Check if we should check the disk
if (counter % disk_to_memory_ratio) == 0:
# Check diskused
diskused = compute_disk_use(repy_constants.REPY_CURRENT_DIR)
if diskused > nanny.get_resource_limit("diskused"):
raise Exception, "Disk use '"+str(diskused)+"' over limit '"+str(nanny.get_resource_limit("diskused"))+"'"
# Sleep until the next iteration of checking the memory
time.sleep(memory_check_interval)
except windows_api.DeadProcess:
# Process may be dead, or die while checking memory use
# In any case, there is no reason to continue running, just exit
harshexit.harshexit(99)
except:
tracebackrepy.handle_exception()
print >> sys.stderr, "Nanny died! Trying to kill everything else"
harshexit.harshexit(20)
# Windows specific CPU Nanny Stuff
winlastcpuinfo = [0,0]
# Enforces CPU limit on Windows and Windows CE
def win_check_cpu_use(cpulim, pid):
global winlastcpuinfo
# get use information and time...
now = getruntime()
# Get the total cpu time
usertime = windows_api.get_process_cpu_time(pid)
useinfo = [usertime, now]
# get the previous time and cpu so we can compute the percentage
oldusertime = winlastcpuinfo[0]
oldnow = winlastcpuinfo[1]
if winlastcpuinfo == [0,0]:
winlastcpuinfo = useinfo
# give them a free pass if it's their first time...
return 0
# save this data for next time...
winlastcpuinfo = useinfo
# Get the elapsed time...
elapsedtime = now - oldnow
# This is a problem
if elapsedtime == 0:
return -1 # Error condition
# percent used is the amount of change divided by the time...
percentused = (usertime - oldusertime) / elapsedtime
# Calculate amount of time to sleep for
stoptime = nanny.calculate_cpu_sleep_interval(cpulim, percentused,elapsedtime)
if stoptime > 0.0:
# Try to timeout the process
if windows_api.timeout_process(pid, stoptime):
# Log the stoptime
process_stopped_timeline.append((now, stoptime))
# Drop the first element if the length is greater than the maximum entries
if len(process_stopped_timeline) > process_stopped_max_entries:
process_stopped_timeline.pop(0)
# Return how long we slept so parent knows whether it should sleep
return stoptime
else:
# Process must have been making system call, try again next time
return -1
# If the stop time is 0, then avoid calling timeout_process
else:
return 0.0
# Dedicated Thread for monitoring CPU, this is run as a part of repy
class WinCPUNannyThread(threading.Thread):
# Thread variables
pid = 0 # Process pid
def __init__(self):
self.pid = os.getpid()
threading.Thread.__init__(self,name="CPUNannyThread")
def run(self):
# Elevate our priority, set us to the highest so that we can more effectively throttle
success = windows_api.set_current_thread_priority(windows_api.THREAD_PRIORITY_HIGHEST)
# If we failed to get HIGHEST priority, try above normal, else we're still at default
if not success:
windows_api.set_current_thread_priority(windows_api.THREAD_PRIORITY_ABOVE_NORMAL)
# Run while the process is running
while True:
try:
# Get the frequency
frequency = repy_constants.CPU_POLLING_FREQ_WIN
# Base amount of sleeping on return value of
# win_check_cpu_use to prevent under/over sleeping
slept = win_check_cpu_use(nanny.get_resource_limit("cpu"), self.pid)
if slept == -1:
# Something went wrong, try again
pass
elif (slept < frequency):
time.sleep(frequency-slept)
except windows_api.DeadProcess:
# Process may be dead
harshexit.harshexit(97)
except:
tracebackrepy.handle_exception()
print >> sys.stderr, "CPU Nanny died! Trying to kill everything else"
harshexit.harshexit(25)
############## *nix specific functions (may include Mac) ###############
# This method handles messages on the "diskused" channel from
# the external process. When the external process measures disk used,
# it is piped in and cached for calls to getresources.
def IPC_handle_diskused(bytes):
cached_disk_used = bytes
# This method handles messages on the "repystopped" channel from
# the external process. When the external process stops repy, it sends
# a tuple with (TOS, amount) where TOS is time of stop (getruntime()) and
# amount is the amount of time execution was suspended.
def IPC_handle_stoptime(info):
# Push this onto the timeline
process_stopped_timeline.append(info)
# Drop the first element if the length is greater than the max
if len(process_stopped_timeline) > process_stopped_max_entries:
process_stopped_timeline.pop(0)
# Use a special class of exception for when
# resource limits are exceeded
class ResourceException(Exception):
pass
# Armon: Method to write a message to the pipe, used for IPC.
# This allows the pipe to be multiplexed by sending simple dictionaries
def write_message_to_pipe(writehandle, channel, data):
"""
<Purpose>
Writes a message to the pipe
<Arguments>
writehandle:
A handle to a pipe which can be written to.
channel:
The channel used to describe the data. Used for multiplexing.
data:
The data to send.
<Exceptions>
As with os.write()
EnvironmentError will be thrown if os.write() sends 0 bytes, indicating the
pipe is broken.
"""
# Construct the dictionary
mesg_dict = {"ch":channel,"d":data}
# Convert to a string
mesg_dict_str = marshal.dumps(mesg_dict)
# Make a full string
mesg = str(len(mesg_dict_str)) + ":" + mesg_dict_str
# Send this
index = 0
while index < len(mesg):
bytes = os.write(writehandle, mesg[index:])
if bytes == 0:
raise EnvironmentError, "Write send 0 bytes! Pipe broken!"
index += bytes
# Armon: Method to read a message from the pipe, used for IPC.
# This allows the pipe to be multiplexed by sending simple dictionaries
def read_message_from_pipe(readhandle):
"""
<Purpose>
Reads a message from a pipe.
<Arguments>
readhandle:
A handle to a pipe which can be read from
<Exceptions>
As with os.read().
EnvironmentError will be thrown if os.read() returns a 0-length string, indicating
the pipe is broken.
<Returns>
A tuple (Channel, Data) where Channel is used to multiplex the pipe.
"""
# Read until we get to a colon
data = ""
index = 0
# Loop until we get a message
while True:
# Read in data if the buffer is empty
if index >= len(data):
# Read 8 bytes at a time
mesg = os.read(readhandle,8)
if len(mesg) == 0:
raise EnvironmentError, "Read returned empty string! Pipe broken!"
data += mesg
# Increment the index while there is data and we have not found a colon
while index < len(data) and data[index] != ":":
index += 1
# Check if we've found a colon
if len(data) > index and data[index] == ":":
# Get the message length
mesg_length = int(data[:index])
# Determine how much more data we need
more_data = mesg_length - len(data) + index + 1
# Read in the rest of the message
while more_data > 0:
mesg = os.read(readhandle, more_data)
if len(mesg) == 0:
raise EnvironmentError, "Read returned empty string! Pipe broken!"
data += mesg
more_data -= len(mesg)
# Done, convert the message to a dict
whole_mesg = data[index+1:]
mesg_dict = marshal.loads(whole_mesg)
# Return a tuple (Channel, Data)
return (mesg_dict["ch"],mesg_dict["d"])
# This dictionary defines the functions that handle messages
# on each channel. E.g. when a message arrives on the "repystopped" channel,
# the IPC_handle_stoptime function should be invoked to handle it.
IPC_HANDLER_FUNCTIONS = {"repystopped":IPC_handle_stoptime,
"diskused":IPC_handle_diskused }
# This thread checks that the parent process is alive and invokes
# delegate methods when messages arrive on the pipe.
class parent_process_checker(threading.Thread):
def __init__(self, readhandle):
"""
<Purpose>
Terminates harshly if our parent dies before we do.
<Arguments>
readhandle: A file descriptor to the handle of a pipe to our parent.
"""
# Name our self
threading.Thread.__init__(self, name="ParentProcessChecker")
# Store the handle
self.readhandle = readhandle
def run(self):
# Run forever
while True:
# Read a message
try:
mesg = read_message_from_pipe(self.readhandle)
except Exception, e:
break
# Check for a handler function
if mesg[0] in IPC_HANDLER_FUNCTIONS:
# Invoke the handler function with the data
handler = IPC_HANDLER_FUNCTIONS[mesg[0]]
handler(mesg[1])
# Print a message if there is a message on an unknown channel
else:
print "[WARN] Message on unknown channel from parent process:", mesg[0]
### We only leave the loop on a fatal error, so we need to exit now
# Write out status information, our parent would do this, but its dead.
statusstorage.write_status("Terminated")
print >> sys.stderr, "Monitor process died! Terminating!"
harshexit.harshexit(70)
# For *NIX systems, there is an external process, and the
# pid for the actual repy process is stored here
repy_process_id = None
# Forks Repy. The child will continue execution, and the parent
# will become a resource monitor
def do_forked_resource_monitor():
global repy_process_id
# Get a pipe
(readhandle, writehandle) = os.pipe()
# I'll fork a copy of myself
childpid = os.fork()
if childpid == 0:
# We are the child, close the write end of the pipe
os.close(writehandle)
# Start a thread to check on the survival of the parent
parent_process_checker(readhandle).start()
return
else:
# We are the parent, close the read end
os.close(readhandle)
# Store the childpid
repy_process_id = childpid
# Start the nmstatusinterface
nmstatusinterface.launch(repy_process_id)
# Small internal error handler function
def _internal_error(message):
try:
print >> sys.stderr, message
sys.stderr.flush()
except:
pass
# Stop the nmstatusinterface, we don't want any more status updates
nmstatusinterface.stop()
# Kill repy
harshexit.portablekill(childpid)
try:
# Write out status information, repy was Stopped
statusstorage.write_status("Terminated")
except:
pass
try:
# Some OS's require that you wait on the pid at least once
# before they do any accounting
(pid, status) = os.waitpid(childpid,os.WNOHANG)
# Launch the resource monitor, if it fails determine why and restart if necessary
resource_monitor(childpid, writehandle)
except ResourceException, exp:
# Repy exceeded its resource limit, kill it
_internal_error(str(exp)+" Impolitely killing child!")
harshexit.harshexit(98)
except Exception, exp:
# There is some general error...
try:
(pid, status) = os.waitpid(childpid,os.WNOHANG)
except:
# This means that the process is dead
pass
# Check if this is repy exiting
if os.WIFEXITED(status) or os.WIFSIGNALED(status):
sys.exit(0)
else:
_internal_error(str(exp)+" Monitor death! Impolitely killing child!")
raise
def resource_monitor(childpid, pipe_handle):
"""
<Purpose>
Function runs in a loop forever, checking resource usage and throttling CPU.
Checks CPU, memory, and disk.
<Arguments>
childpid:
The child pid, e.g. the pid of repy
pipe_handle:
A handle to the pipe to the repy process. Allows sending resource use information.
"""
# Get our pid
ourpid = os.getpid()
# Calculate how often disk should be checked
disk_interval = int(repy_constants.RESOURCE_POLLING_FREQ_LINUX / repy_constants.CPU_POLLING_FREQ_LINUX)
current_interval = -1 # What cycle are we on
# Store time of the last interval
last_time = getruntime()
last_CPU_time = 0
resume_time = 0
# Run forever...
while True:
########### Check CPU ###########
# Get elapsed time
currenttime = getruntime()
elapsedtime1 = currenttime - last_time # Calculate against last run
elapsedtime2 = currenttime - resume_time # Calculate since we last resumed repy
elapsedtime = min(elapsedtime1, elapsedtime2) # Take the minimum interval
last_time = currenttime # Save the current time
# Safety check, prevent ZeroDivisionError
if elapsedtime == 0.0:
continue
# Get the total cpu at this point
totalCPU = os_api.get_process_cpu_time(ourpid) # Our own usage
totalCPU += os_api.get_process_cpu_time(childpid) # Repy's usage
# Calculate percentage of CPU used
percentused = (totalCPU - last_CPU_time) / elapsedtime
# Do not throttle for the first interval, wrap around
# Store the totalCPU for the next cycle
if last_CPU_time == 0:
last_CPU_time = totalCPU
continue
else:
last_CPU_time = totalCPU
# Calculate stop time
stoptime = nanny.calculate_cpu_sleep_interval(nanny.get_resource_limit("cpu"), percentused, elapsedtime)
# If we are supposed to stop repy, then suspend, sleep and resume
if stoptime > 0.0:
# They must be punished by stopping
os.kill(childpid, signal.SIGSTOP)
# Sleep until time to resume
time.sleep(stoptime)
# And now they can start back up!
os.kill(childpid, signal.SIGCONT)
# Save the resume time
resume_time = getruntime()
# Send this information as a tuple containing the time repy was stopped and
# for how long it was stopped
write_message_to_pipe(pipe_handle, "repystopped", (currenttime, stoptime))
########### End Check CPU ###########
#
########### Check Memory ###########
# Get how much memory repy is using
memused = os_api.get_process_rss()
# Check if it is using too much memory
if memused > nanny.get_resource_limit("memory"):
raise ResourceException, "Memory use '"+str(memused)+"' over limit '"+str(nanny.get_resource_limit("memory"))+"'."
########### End Check Memory ###########
#
########### Check Disk Usage ###########
# Increment our current cycle
current_interval += 1;
# Check if it is time to check the disk usage
if (current_interval % disk_interval) == 0:
# Reset the interval
current_interval = 0
# Calculate disk used
diskused = compute_disk_use(repy_constants.REPY_CURRENT_DIR)
# Raise exception if we are over limit
if diskused > nanny.get_resource_limit("diskused"):
raise ResourceException, "Disk use '"+str(diskused)+"' over limit '"+str(nanny.get_resource_limit("diskused"))+"'."
# Send the disk usage information, raw bytes used
write_message_to_pipe(pipe_handle, "diskused", diskused)
########### End Check Disk ###########
# Sleep before the next iteration
time.sleep(repy_constants.CPU_POLLING_FREQ_LINUX)
########### functions that help me figure out the os type ###########
# Calculates the system granularity
def calculate_granularity():
global granularity
if ostype in ["Windows"]:
# The Granularity of getTickCount is 1 millisecond
granularity = pow(10,-3)
elif ostype == "Linux":
# We don't know if the granularity is correct yet
correct_granularity = False
# How many times have we tested
tests = 0
# Loop while the granularity is incorrect, up to 10 times
while not correct_granularity and tests <= 10:
current_granularity = os_api.get_uptime_granularity()
uptime_pre = os_api.get_system_uptime()
time.sleep(current_granularity / 10)
uptime_post = os_api.get_system_uptime()
diff = uptime_post - uptime_pre
correct_granularity = int(diff / current_granularity) == (diff / current_granularity)
tests += 1
granularity = current_granularity
elif ostype == "Darwin":
granularity = os_api.get_uptime_granularity()
# Call init_ostype!!!
harshexit.init_ostype()
ostype = harshexit.ostype
osrealtype = harshexit.osrealtype
# Import the proper system wide API
if osrealtype == "Linux":
import linux_api as os_api
elif osrealtype == "Darwin":
import darwin_api as os_api
elif osrealtype == "FreeBSD":
import freebsd_api as os_api
elif ostype == "Windows":
# There is no real reason to do this, since windows is imported separately
import windows_api as os_api
else:
# This is a non-supported OS
raise UnsupportedSystemException, "The current Operating System is not supported! Fatal Error."
# Set granularity
calculate_granularity()
# For Windows, we need to initialize time.clock()
if ostype in ["Windows"]:
time.clock()
# Initialize getruntime for other platforms
else:
# Set the starttime to the initial uptime
starttime = getruntime()
last_uptime = starttime
# Reset elapsed time
elapsedtime = 0