Skip to content

Latest commit

 

History

History

upernet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Introduction

Official Repo

Code Snippet

UPerNet (ECCV'2018)
@inproceedings{xiao2018unified,
    title={Unified perceptual parsing for scene understanding},
    author={Xiao, Tete and Liu, Yingcheng and Zhou, Bolei and Jiang, Yuning and Sun, Jian},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={418--434},
    year={2018}
}

Results

PASCAL VOC

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 76.86% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 77.48% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 79.13% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 77.88% cfg | model | log

ADE20k

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 43.02% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 42.87% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.92% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.77% cfg | model | log

CityScapes

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 79.08% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 78.94% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 80.39% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 79.64% cfg | model | log

More

You can also download the model weights from following sources: