-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathcityscapes.py
84 lines (82 loc) · 3.67 KB
/
cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
'''
Function:
Implementation of CityScapesDataset
Author:
Zhenchao Jin
'''
import os
import numpy as np
import pandas as pd
from PIL import Image
from .base import BaseDataset
'''CityScapesDataset'''
class CityScapesDataset(BaseDataset):
num_classes = 19
classnames = [
'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic_light',
'traffic_sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car',
'truck', 'bus', 'train', 'motorcycle', 'bicycle'
]
palette = [
(128, 64, 128), (244, 35, 232), (70, 70, 70), (102, 102, 156), (190, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0),
(107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70), (0, 60, 100),
(0, 80, 100), (0, 0, 230), (119, 11, 32)
]
clsid2label = {
-1: 255, 0: 255, 1: 255, 2: 255, 3: 255, 4: 255, 5: 255, 6: 255,
7: 0, 8: 1, 9: 255, 10: 255, 11: 2, 12: 3, 13: 4, 14: 255,
15: 255, 16: 255, 17: 5, 18: 255, 19: 6, 20: 7, 21: 8, 22: 9,
23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 29: 255, 30: 255,
31: 16, 32: 17, 33: 18
}
assert num_classes == len(classnames) and num_classes == len(palette)
def __init__(self, mode, logger_handle, dataset_cfg):
super(CityScapesDataset, self).__init__(mode=mode, logger_handle=logger_handle, dataset_cfg=dataset_cfg)
# obtain the dirs
rootdir = dataset_cfg['rootdir']
self.image_dir = os.path.join(rootdir, 'leftImg8bit', dataset_cfg['set'])
self.ann_dir = os.path.join(rootdir, 'gtFine', dataset_cfg['set'])
# obatin imageids
df = pd.read_csv(os.path.join(rootdir, dataset_cfg['set']+'.txt'), names=['imageids'])
self.imageids = df['imageids'].values
self.imageids = [str(_id) for _id in self.imageids]
self.ann_ext = '.png'
self.image_ext = '.png'
'''getitem'''
def __getitem__(self, index):
# imageid
imageid = self.imageids[index % len(self.imageids)]
# read sample_meta
imagepath = os.path.join(self.image_dir, f'{imageid}{self.image_ext}')
annpath = os.path.join(self.ann_dir, f'{imageid.replace("leftImg8bit", "gtFine_labelIds")}{self.ann_ext}')
sample_meta = self.read(imagepath, annpath)
# add image id
sample_meta.update({'id': imageid})
# synctransforms
sample_meta = self.synctransforms(sample_meta)
# return
return sample_meta
'''formatresults'''
@staticmethod
def formatresults(results, filenames, to_label_id=True, savedir='results'):
assert len(filenames) == len(results)
def convert(result):
import cityscapesscripts.helpers.labels as CSLabels
result_copy = result.copy()
for trainId, label in CSLabels.trainId2label.items():
result_copy[result == trainId] = label.id
return result_copy
if not os.path.exists(savedir): os.mkdir(savedir)
for idx in range(len(results)):
result = results[idx]
filename = filenames[idx]
if to_label_id: result = convert(result)
basename = os.path.splitext(os.path.basename(filename))[0]
png_filename = os.path.join(savedir, f'{basename}.png')
output = Image.fromarray(result.astype(np.uint8)).convert('P')
import cityscapesscripts.helpers.labels as CSLabels
palette = np.zeros((len(CSLabels.id2label), 3), dtype=np.uint8)
for label_id, label in CSLabels.id2label.items():
palette[label_id] = label.color
output.putpalette(palette)
output.save(png_filename)