-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathtwins.py
317 lines (301 loc) · 16.6 KB
/
twins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
'''
Function:
Implementation of Twins
Author:
Zhenchao Jin
'''
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from collections import OrderedDict
from .mit import EfficientMultiheadAttention
from .bricks import BuildNormalization, FFN, BuildDropout, PatchEmbed
'''DEFAULT_MODEL_URLS'''
DEFAULT_MODEL_URLS = {
'pcpvt_small': 'https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_twins/pcpvt_small.pth',
'pcpvt_base': 'https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_twins/pcpvt_base.pth',
'pcpvt_large': 'https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_twins/pcpvt_large.pth',
'svt_small': 'https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_twins/alt_gvt_small.pth',
'svt_base': 'https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_twins/alt_gvt_base.pth',
'svt_large': 'https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_twins/alt_gvt_large.pth',
}
'''AUTO_ASSERT_STRUCTURE_TYPES'''
AUTO_ASSERT_STRUCTURE_TYPES = {
'pcpvt_small': {'depths': [3, 4, 6, 3], 'drop_path_rate': 0.2},
'pcpvt_base': {'depths': [3, 4, 18, 3], 'drop_path_rate': 0.3},
'pcpvt_large': {'depths': [3, 8, 27, 3], 'drop_path_rate': 0.3},
'svt_small': {'embed_dims': [64, 128, 256, 512], 'num_heads': [2, 4, 8, 16], 'mlp_ratios': [4, 4, 4, 4], 'depths': [2, 2, 10, 4], 'windiow_sizes': [7, 7, 7, 7], 'norm_after_stage': True, 'drop_path_rate': 0.2},
'svt_base': {'embed_dims': [96, 192, 384, 768], 'num_heads': [3, 6, 12, 24], 'mlp_ratios': [4, 4, 4, 4], 'depths': [2, 2, 18, 2], 'windiow_sizes': [7, 7, 7, 7], 'norm_after_stage': True, 'drop_path_rate': 0.2},
'svt_large': {'embed_dims': [128, 256, 512, 1024], 'num_heads': [4, 8, 16, 32], 'mlp_ratios': [4, 4, 4, 4], 'depths': [2, 2, 18, 2], 'windiow_sizes': [7, 7, 7, 7], 'norm_after_stage': True, 'drop_path_rate': 0.3},
}
'''GlobalSubsampledAttention'''
class GlobalSubsampledAttention(EfficientMultiheadAttention):
def __init__(self, embed_dims, num_heads, attn_drop=0., proj_drop=0., dropout_cfg=None, batch_first=True, qkv_bias=True, norm_cfg=None, sr_ratio=1):
super(GlobalSubsampledAttention, self).__init__(embed_dims, num_heads, attn_drop, proj_drop, dropout_cfg, batch_first, qkv_bias, norm_cfg, sr_ratio)
'''GSAEncoderLayer'''
class GSAEncoderLayer(nn.Module):
def __init__(self, embed_dims, num_heads, feedforward_channels, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., num_fcs=2,
qkv_bias=True, act_cfg=None, norm_cfg=None, sr_ratio=1., dropout_cfg=None):
super(GSAEncoderLayer, self).__init__()
if dropout_cfg is None: dropout_cfg = {'type': 'DropPath', 'drop_prob': drop_path_rate}
self.norm1 = BuildNormalization(placeholder=embed_dims, norm_cfg=norm_cfg)
self.attn = GlobalSubsampledAttention(
embed_dims=embed_dims, num_heads=num_heads, attn_drop=attn_drop_rate, proj_drop=drop_rate,
dropout_cfg=dropout_cfg, qkv_bias=qkv_bias, norm_cfg=norm_cfg, sr_ratio=sr_ratio
)
self.norm2 = BuildNormalization(placeholder=embed_dims, norm_cfg=norm_cfg)
self.ffn = FFN(
embed_dims=embed_dims, feedforward_channels=feedforward_channels, num_fcs=num_fcs, ffn_drop=drop_rate,
dropout_cfg=dropout_cfg, act_cfg=act_cfg, add_identity=False,
)
self.drop_path = BuildDropout(dropout_cfg) if (dropout_cfg and (drop_path_rate > 0.)) else nn.Identity()
'''forward'''
def forward(self, x, hw_shape):
x = x + self.drop_path(self.attn(self.norm1(x), hw_shape, identity=0.))
x = x + self.drop_path(self.ffn(self.norm2(x)))
return x
'''LocallyGroupedSelfAttention'''
class LocallyGroupedSelfAttention(nn.Module):
def __init__(self, embed_dims, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop_rate=0., proj_drop_rate=0., window_size=1):
super(LocallyGroupedSelfAttention, self).__init__()
# set attributes
assert embed_dims % num_heads == 0
self.embed_dims = embed_dims
self.num_heads = num_heads
self.window_size = window_size
head_dim = embed_dims // num_heads
self.scale = qk_scale or head_dim**-0.5
# set layers
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_rate)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop_rate)
'''forward'''
def forward(self, x, hw_shape):
b, n, c = x.shape
h, w = hw_shape
x = x.view(b, h, w, c)
# pad feature maps to multiples of Local-groups
pad_l = pad_t = 0
pad_r = (self.window_size - w % self.window_size) % self.window_size
pad_b = (self.window_size - h % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
# calculate attention mask for LSA
Hp, Wp = x.shape[1:-1]
_h, _w = Hp // self.window_size, Wp // self.window_size
mask = torch.zeros((1, Hp, Wp), device=x.device)
mask[:, -pad_b:, :].fill_(1)
mask[:, :, -pad_r:].fill_(1)
# [B, _h, _w, window_size, window_size, C]
x = x.reshape(b, _h, self.window_size, _w, self.window_size, c).transpose(2, 3)
mask = mask.reshape(1, _h, self.window_size, _w, self.window_size).transpose(2, 3).reshape(1, _h * _w, self.window_size * self.window_size)
# [1, _h*_w, window_size*window_size, window_size*window_size]
attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0))
# [3, B, _w*_h, nhead, window_size*window_size, dim]
qkv = self.qkv(x).reshape(b, _h * _w, self.window_size * self.window_size, 3, self.num_heads, c // self.num_heads).permute(3, 0, 1, 4, 2, 5)
q, k, v = qkv[0], qkv[1], qkv[2]
# [B, _h*_w, n_head, window_size*window_size, window_size*window_size]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn + attn_mask.unsqueeze(2)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(b, _h, _w, self.window_size, self.window_size, c)
x = attn.transpose(2, 3).reshape(b, _h * self.window_size, _w * self.window_size, c)
if pad_r > 0 or pad_b > 0: x = x[:, :h, :w, :].contiguous()
x = x.reshape(b, n, c)
x = self.proj(x)
x = self.proj_drop(x)
return x
'''LSAEncoderLayer'''
class LSAEncoderLayer(nn.Module):
def __init__(self, embed_dims, num_heads, feedforward_channels, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
num_fcs=2, qkv_bias=True, qk_scale=None, act_cfg=None, norm_cfg=None, window_size=1, dropout_cfg=None):
super(LSAEncoderLayer, self).__init__()
if dropout_cfg is None: dropout_cfg = {'type': 'DropPath', 'drop_prob': drop_path_rate}
self.norm1 = BuildNormalization(placeholder=embed_dims, norm_cfg=norm_cfg)
self.attn = LocallyGroupedSelfAttention(embed_dims, num_heads, qkv_bias, qk_scale, attn_drop_rate, drop_rate, window_size)
self.norm2 = BuildNormalization(placeholder=embed_dims, norm_cfg=norm_cfg)
self.ffn = FFN(
embed_dims=embed_dims, feedforward_channels=feedforward_channels, num_fcs=num_fcs, ffn_drop=drop_rate,
dropout_cfg=dropout_cfg, act_cfg=act_cfg, add_identity=False,
)
self.drop_path = BuildDropout(dropout_cfg) if (dropout_cfg and (drop_path_rate > 0.)) else nn.Identity()
'''forward'''
def forward(self, x, hw_shape):
x = x + self.drop_path(self.attn(self.norm1(x), hw_shape))
x = x + self.drop_path(self.ffn(self.norm2(x)))
return x
'''ConditionalPositionEncoding'''
class ConditionalPositionEncoding(nn.Module):
def __init__(self, in_channels, embed_dims=768, stride=1):
super(ConditionalPositionEncoding, self).__init__()
self.stride = stride
self.proj = nn.Conv2d(in_channels, embed_dims, kernel_size=3, stride=stride, padding=1, bias=True, groups=embed_dims)
'''forward'''
def forward(self, x, hw_shape):
b, n, c = x.shape
h, w = hw_shape
feat_token = x
cnn_feat = feat_token.transpose(1, 2).view(b, c, h, w)
if self.stride == 1: x = self.proj(cnn_feat) + cnn_feat
else: x = self.proj(cnn_feat)
x = x.flatten(2).transpose(1, 2)
return x
'''Twins-PCPVT'''
class PCPVT(nn.Module):
def __init__(self, structure_type, in_channels=3, embed_dims=[64, 128, 320, 512], patch_sizes=[4, 2, 2, 2], strides=[4, 2, 2, 2], num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4], out_indices=(0, 1, 2, 3), qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1], norm_after_stage=False, norm_cfg={'type': 'LayerNorm'}, act_cfg={'type': 'GELU'}, pretrained=True, pretrained_model_path=''):
super(PCPVT, self).__init__()
# set attributes
self.structure_type = structure_type
self.in_channels = in_channels
self.embed_dims = embed_dims
self.patch_sizes = patch_sizes
self.strides = strides
self.num_heads = num_heads
self.mlp_ratios = mlp_ratios
self.out_indices = out_indices
self.qkv_bias = qkv_bias
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.depths = depths
self.sr_ratios = sr_ratios
self.norm_after_stage = norm_after_stage
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.pretrained = pretrained
self.pretrained_model_path = pretrained_model_path
# assert
if structure_type in AUTO_ASSERT_STRUCTURE_TYPES:
for key, value in AUTO_ASSERT_STRUCTURE_TYPES[structure_type].items():
assert hasattr(self, key) and (getattr(self, key) == value)
# patch embed
self.patch_embeds = nn.ModuleList()
self.position_encoding_drops = nn.ModuleList()
for i in range(len(depths)):
self.patch_embeds.append(PatchEmbed(
in_channels=in_channels if i == 0 else embed_dims[i - 1], embed_dims=embed_dims[i],
kernel_size=patch_sizes[i], stride=strides[i], padding='corner', norm_cfg=norm_cfg
))
self.position_encoding_drops.append(nn.Dropout(p=drop_rate))
# position encodings
self.position_encodings = nn.ModuleList([
ConditionalPositionEncoding(embed_dim, embed_dim) for embed_dim in embed_dims
])
# transformer encoder, stochastic depth decay rule
self.layers = nn.ModuleList()
dpr, cur = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))], 0
for k in range(len(depths)):
_block = nn.ModuleList([GSAEncoderLayer(
embed_dims=embed_dims[k], num_heads=num_heads[k], feedforward_channels=mlp_ratios[k] * embed_dims[k],
attn_drop_rate=attn_drop_rate, drop_rate=drop_rate, drop_path_rate=dpr[cur + i], num_fcs=2,
qkv_bias=qkv_bias, act_cfg=act_cfg, norm_cfg=norm_cfg, sr_ratio=sr_ratios[k]) for i in range(depths[k])
])
self.layers.append(_block)
cur += depths[k]
# norm
if self.norm_after_stage:
self.norm_list = nn.ModuleList()
for dim in embed_dims:
self.norm_list.append(BuildNormalization(placeholder=dim, norm_cfg=norm_cfg))
# load pretrained weights
if pretrained:
self.loadpretrainedweights(structure_type, pretrained_model_path)
'''forward'''
def forward(self, x):
outputs, b = list(), x.shape[0]
for i in range(len(self.depths)):
x, hw_shape = self.patch_embeds[i](x)
h, w = hw_shape
x = self.position_encoding_drops[i](x)
for j, blk in enumerate(self.layers[i]):
x = blk(x, hw_shape)
if j == 0: x = self.position_encodings[i](x, hw_shape)
if self.norm_after_stage: x = self.norm_list[i](x)
x = x.reshape(b, h, w, -1).permute(0, 3, 1, 2).contiguous()
if i in self.out_indices:
outputs.append(x)
return tuple(outputs)
'''loadpretrainedweights'''
def loadpretrainedweights(self, structure_type='pcpvt_small', pretrained_model_path=''):
# load
if pretrained_model_path and os.path.exists(pretrained_model_path):
checkpoint = torch.load(pretrained_model_path, map_location='cpu')
else:
checkpoint = model_zoo.load_url(DEFAULT_MODEL_URLS[structure_type], map_location='cpu')
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
# be consistent
state_dict = self.twinsconvert(structure_type, state_dict)
# load state_dict
self.load_state_dict(state_dict, strict=False)
'''twinsconvert'''
@staticmethod
def twinsconvert(structure_type, ckpt):
new_ckpt = OrderedDict()
for k, v in list(ckpt.items()):
new_v = v
if k.startswith('head'): continue
elif k.startswith('patch_embeds'):
if 'proj.' in k: new_k = k.replace('proj.', 'projection.')
else: new_k = k
elif k.startswith('blocks'):
if 'attn.q.' in k:
new_k = k.replace('q.', 'attn.in_proj_')
new_v = torch.cat([v, ckpt[k.replace('attn.q.', 'attn.kv.')]], dim=0)
elif 'mlp.fc1' in k:
new_k = k.replace('mlp.fc1', 'ffn.layers.0.0')
elif 'mlp.fc2' in k:
new_k = k.replace('mlp.fc2', 'ffn.layers.1')
elif structure_type.startswith('pcpvt'):
if 'attn.proj.' in k: new_k = k.replace('proj.', 'attn.out_proj.')
else: new_k = k
else:
if 'attn.proj.' in k:
k_lst = k.split('.')
if int(k_lst[2]) % 2 == 1: new_k = k.replace('proj.', 'attn.out_proj.')
else: new_k = k
else:
new_k = k
new_k = new_k.replace('blocks.', 'layers.')
elif k.startswith('pos_block'):
new_k = k.replace('pos_block', 'position_encodings')
if 'proj.0.' in new_k: new_k = new_k.replace('proj.0.', 'proj.')
else:
new_k = k
if 'attn.kv.' not in k: new_ckpt[new_k] = new_v
return new_ckpt
'''Twins-SVT'''
class SVT(PCPVT):
def __init__(self, structure_type, in_channels=3, embed_dims=[64, 128, 256], patch_sizes=[4, 2, 2, 2], strides=[4, 2, 2, 2], num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4],
out_indices=(0, 1, 2, 3), qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, depths=[4, 4, 4], sr_ratios=[8, 4, 2, 1],
windiow_sizes=[7, 7, 7], norm_after_stage=True, norm_cfg={'type': 'LayerNorm'}, act_cfg={'type': 'GELU'}, pretrained=True, pretrained_model_path=''):
self.windiow_sizes = windiow_sizes
super(SVT, self).__init__(
in_channels=in_channels, embed_dims=embed_dims, patch_sizes=patch_sizes, strides=strides, num_heads=num_heads, mlp_ratios=mlp_ratios,
out_indices=out_indices, qkv_bias=qkv_bias, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=drop_path_rate,
depths=depths, sr_ratios=sr_ratios, norm_after_stage=norm_after_stage, norm_cfg=norm_cfg, act_cfg=act_cfg, pretrained=False, pretrained_model_path='',
structure_type=structure_type,
)
# transformer encoder, stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
for k in range(len(depths)):
for i in range(depths[k]):
if i % 2 == 0:
self.layers[k][i] = LSAEncoderLayer(
embed_dims=embed_dims[k], num_heads=num_heads[k], feedforward_channels=mlp_ratios[k] * embed_dims[k],
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=dpr[sum(depths[:k])+i], num_fcs=2,
qkv_bias=qkv_bias, window_size=windiow_sizes[k], norm_cfg=norm_cfg, act_cfg=act_cfg
)
# load pretrained weights
if pretrained:
self.loadpretrainedweights(structure_type, pretrained_model_path)