-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathdmnet.py
59 lines (57 loc) · 2.89 KB
/
dmnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
'''
Function:
Implementation of DMNet
Author:
Zhenchao Jin
'''
import torch
import torch.nn as nn
from ..base import BaseSegmentor
from ....utils import SSSegOutputStructure
from .dcm import DynamicConvolutionalModule
from ...backbones import BuildActivation, BuildNormalization
'''DMNet'''
class DMNet(BaseSegmentor):
def __init__(self, cfg, mode):
super(DMNet, self).__init__(cfg, mode)
align_corners, norm_cfg, act_cfg, head_cfg = self.align_corners, self.norm_cfg, self.act_cfg, cfg['head']
# build dcm
self.dcm_modules = nn.ModuleList()
for filter_size in head_cfg['filter_sizes']:
self.dcm_modules.append(DynamicConvolutionalModule(
filter_size=filter_size, is_fusion=head_cfg['is_fusion'], in_channels=head_cfg['in_channels'],
out_channels=head_cfg['feats_channels'], norm_cfg=norm_cfg, act_cfg=act_cfg,
))
# build decoder
self.decoder = nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'] * len(head_cfg['filter_sizes']) + head_cfg['in_channels'], head_cfg['feats_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['feats_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0)
)
# build auxiliary decoder
self.setauxiliarydecoder(cfg['auxiliary'])
# freeze normalization layer if necessary
if cfg.get('is_freeze_norm', False): self.freezenormalization()
'''forward'''
def forward(self, data_meta):
img_size = data_meta.images.size(2), data_meta.images.size(3)
# feed to backbone network
backbone_outputs = self.transforminputs(self.backbone_net(data_meta.images), selected_indices=self.cfg['backbone'].get('selected_indices'))
# feed to dcm
dcm_outs = [backbone_outputs[-1]]
for dcm_module in self.dcm_modules:
dcm_outs.append(dcm_module(backbone_outputs[-1]))
feats = torch.cat(dcm_outs, dim=1)
# feed to decoder
seg_logits = self.decoder(feats)
# forward according to the mode
if self.mode in ['TRAIN', 'TRAIN_DEVELOP']:
loss, losses_log_dict = self.customizepredsandlosses(
seg_logits=seg_logits, annotations=data_meta.getannotations(), backbone_outputs=backbone_outputs, losses_cfg=self.cfg['losses'], img_size=img_size,
)
ssseg_outputs = SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict) if self.mode == 'TRAIN' else SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict, seg_logits=seg_logits)
else:
ssseg_outputs = SSSegOutputStructure(mode=self.mode, seg_logits=seg_logits)
return ssseg_outputs