-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathidrnet.py
368 lines (366 loc) · 24.5 KB
/
idrnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
'''
Function:
Implementation of IDRNet
Author:
Zhenchao Jin
'''
import copy
import torch
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from ..deeplabv3 import ASPP
from ...losses import calculatelosses
from ..pspnet import PyramidPoolingModule
from ....utils import SSSegOutputStructure
from ..base import BaseSegmentor, SelfAttentionBlock
from ...backbones import BuildActivation, BuildNormalization
'''IDRNet'''
class IDRNet(BaseSegmentor):
def __init__(self, cfg, mode):
super(IDRNet, self).__init__(cfg, mode)
align_corners, norm_cfg, act_cfg, head_cfg = self.align_corners, self.norm_cfg, self.act_cfg, cfg['head']
# build bottleneck
self.bottleneck = nn.Sequential(
nn.Conv2d(head_cfg['in_channels'], head_cfg['feats_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
# coarse context
if 'coarse_context' in head_cfg:
supported_coarse_contexts = {
'aspp': ASPP, 'ppm': PyramidPoolingModule,
}
coarse_context_cfg = {
'in_channels': head_cfg['feats_channels'], 'out_channels': head_cfg['feats_channels'],
'align_corners': align_corners, 'norm_cfg': norm_cfg, 'act_cfg': act_cfg
}
coarse_context_cfg.update(head_cfg['coarse_context'])
coarse_context_type = coarse_context_cfg.pop('type')
if 'fpn' in head_cfg:
coarse_context_cfg['out_channels'] = head_cfg['fpn']['feats_channels']
self.coarse_context_module = supported_coarse_contexts[coarse_context_type](**coarse_context_cfg)
if head_cfg['use_sa_on_coarsecontext_before']:
self.coarsecontext_refiner_before = SelfAttentionBlock(
key_in_channels=coarse_context_cfg['out_channels'], query_in_channels=coarse_context_cfg['out_channels'], transform_channels=head_cfg['refine_coarsecontext_channels'],
out_channels=coarse_context_cfg['out_channels'], share_key_query=False, query_downsample=None, key_downsample=None, key_query_num_convs=2,
value_out_num_convs=1, key_query_norm=True, value_out_norm=True, matmul_norm=True, with_out_project=True, norm_cfg=norm_cfg, act_cfg=act_cfg
)
elif head_cfg['use_sa_on_coarsecontext_after']:
self.coarsecontext_refiner_after = SelfAttentionBlock(
key_in_channels=coarse_context_cfg['out_channels'], query_in_channels=coarse_context_cfg['out_channels'], transform_channels=head_cfg['refine_coarsecontext_channels'],
out_channels=coarse_context_cfg['out_channels'], share_key_query=False, query_downsample=None, key_downsample=None, key_query_num_convs=2,
value_out_num_convs=1, key_query_norm=True, value_out_norm=True, matmul_norm=True, with_out_project=True, norm_cfg=norm_cfg, act_cfg=act_cfg
)
# fpn
if 'fpn' in head_cfg:
act_cfg_copy = copy.deepcopy(act_cfg)
if 'inplace' in act_cfg_copy: act_cfg_copy['inplace'] = False
self.lateral_convs = nn.ModuleList()
for in_channels in head_cfg['fpn']['in_channels_list'][:-1]:
self.lateral_convs.append(nn.Sequential(
nn.Conv2d(in_channels, head_cfg['fpn']['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['fpn']['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg_copy),
))
self.fpn_convs = nn.ModuleList()
for in_channels in [head_cfg['fpn']['feats_channels'],] * len(self.lateral_convs):
self.fpn_convs.append(nn.Sequential(
nn.Conv2d(in_channels, head_cfg['fpn']['out_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['fpn']['out_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg_copy),
))
# class relations
for name in ['class_relations_mean', 'class_relations_var']:
value = nn.Parameter(torch.eye(cfg['num_classes']).float(), requires_grad=False)
setattr(self, name, value)
self.selected_classes_counter = nn.Parameter(
torch.ones(cfg['num_classes']).float() * 1e-6, requires_grad=False
)
# idcontext refiner
self.idcontext_refiner = SelfAttentionBlock(
key_in_channels=head_cfg['feats_channels'] * 6, query_in_channels=head_cfg['feats_channels'] * 6, transform_channels=head_cfg['refine_idcontext_channels'],
out_channels=head_cfg['feats_channels'], share_key_query=False, query_downsample=None, key_downsample=None, key_query_num_convs=2,
value_out_num_convs=1, key_query_norm=True, value_out_norm=True, matmul_norm=True, with_out_project=True, norm_cfg=norm_cfg, act_cfg=act_cfg
)
# dataset-level class representations
self.dl_cls_representations = nn.Parameter(
torch.zeros(cfg['num_classes'], head_cfg['feats_channels']).float(), requires_grad=False
)
# build decoder
if hasattr(self, 'coarse_context_module') and ('fpn' in head_cfg) and head_cfg['use_fpn_before']:
decoder_stage1_in_channels = coarse_context_cfg['out_channels'] + head_cfg['fpn']['out_channels'] * 3
else:
decoder_stage1_in_channels = coarse_context_cfg['out_channels'] if 'coarse_context' in head_cfg else head_cfg['feats_channels']
if head_cfg['force_stage1_use_oripr']:
decoder_stage1_in_channels = head_cfg['feats_channels']
if not hasattr(self, 'coarse_context_module'):
decoder_stage2_in_channels = head_cfg['feats_channels'] * 2
elif hasattr(self, 'coarse_context_module') and 'fpn' not in head_cfg:
decoder_stage2_in_channels = head_cfg['feats_channels'] * 2 + coarse_context_cfg['out_channels']
elif hasattr(self, 'coarse_context_module') and 'fpn' in head_cfg:
decoder_stage2_in_channels = head_cfg['feats_channels'] * 2 + coarse_context_cfg['out_channels'] + head_cfg['fpn']['out_channels'] * 3
for (name, in_channels) in [('decoder_stage1', decoder_stage1_in_channels), ('decoder_stage2', decoder_stage2_in_channels)]:
value = nn.Sequential(
nn.Conv2d(in_channels, head_cfg['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['feats_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0),
)
setattr(self, name, value)
# build auxiliary decoder
self.setauxiliarydecoder(cfg['auxiliary'])
# freeze normalization layer if necessary
if cfg.get('is_freeze_norm', False): self.freezenormalization()
'''forward'''
def forward(self, data_meta):
img_size = data_meta.images.size(2), data_meta.images.size(3)
seed = random.randint(1, 1e16)
# feed to backbone network
backbone_outputs = self.transforminputs(self.backbone_net(data_meta.images), selected_indices=self.cfg['backbone'].get('selected_indices'))
# feed to the bottleneck
feats, coarse_context = self.bottleneck(backbone_outputs[-1]), None
# feed to coarse context module and decoder_stage1
if hasattr(self, 'coarse_context_module'):
coarse_context = self.coarse_context_module(feats)
if hasattr(self, 'coarsecontext_refiner_before'):
assert not hasattr(self, 'coarsecontext_refiner_after')
coarse_context = self.coarsecontext_refiner_before(coarse_context, coarse_context)
if hasattr(self, 'fpn_convs') and self.cfg['head']['use_fpn_before']:
assert not self.cfg['head']['use_fpn_after']
assert coarse_context is not None, 'upernet setting error'
inputs = backbone_outputs[:-1]
lateral_outputs = [lateral_conv(inputs[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
lateral_outputs.append(coarse_context)
for i in range(len(lateral_outputs) - 1, 0, -1):
prev_shape = lateral_outputs[i - 1].shape[2:]
lateral_outputs[i - 1] = lateral_outputs[i - 1] + F.interpolate(lateral_outputs[i], size=prev_shape, mode='bilinear', align_corners=self.align_corners)
fpn_outputs = [self.fpn_convs[i](lateral_outputs[i]) for i in range(len(lateral_outputs) - 1)]
fpn_outputs.append(lateral_outputs[-1])
fpn_outputs = [F.interpolate(out, size=fpn_outputs[0].size()[2:], mode='bilinear', align_corners=self.align_corners) for out in fpn_outputs]
coarse_context = torch.cat(fpn_outputs, dim=1)
if self.cfg['head']['force_stage1_use_oripr']:
preds_stage1 = self.decoder_stage1(feats)
else:
preds_stage1 = self.decoder_stage1(feats if coarse_context is None else coarse_context)
if preds_stage1.shape[2:] != feats.shape[2:]:
preds_stage1 = F.interpolate(preds_stage1, size=feats.shape[2:], mode='bilinear', align_corners=self.align_corners)
if hasattr(self, 'coarse_context_module') and hasattr(self, 'coarsecontext_refiner_after'):
assert not hasattr(self, 'coarsecontext_refiner_before')
coarse_context = self.coarsecontext_refiner_after(coarse_context, coarse_context)
# insert dl_cls_representations into feats
feats_withdl = self.insertdlrepresentations(feats, preds_stage1)
# obtain intervention-driven contextual information
id_context_mean, valid_clsids_batch = self.obtainidcontext(feats_withdl, preds_stage1, self.class_relations_mean)
id_context_var, _ = self.obtainidcontext(feats_withdl, preds_stage1, self.class_relations_var, None, False)
id_context = self.idcontext_refiner(torch.cat([feats_withdl, id_context_mean, id_context_var], dim=1), torch.cat([feats_withdl, id_context_mean, id_context_var], dim=1))
# feed to decoder_stage2
if hasattr(self, 'fpn_convs') and self.cfg['head']['use_fpn_after']:
assert not self.cfg['head']['use_fpn_before']
assert coarse_context is not None, 'upernet setting error'
inputs = backbone_outputs[:-1]
lateral_outputs = [lateral_conv(inputs[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
lateral_outputs.append(coarse_context)
for i in range(len(lateral_outputs) - 1, 0, -1):
prev_shape = lateral_outputs[i - 1].shape[2:]
lateral_outputs[i - 1] = lateral_outputs[i - 1] + F.interpolate(lateral_outputs[i], size=prev_shape, mode='bilinear', align_corners=self.align_corners)
fpn_outputs = [self.fpn_convs[i](lateral_outputs[i]) for i in range(len(lateral_outputs) - 1)]
fpn_outputs.append(lateral_outputs[-1])
fpn_outputs = [F.interpolate(out, size=fpn_outputs[0].size()[2:], mode='bilinear', align_corners=self.align_corners) for out in fpn_outputs]
coarse_context = torch.cat(fpn_outputs, dim=1)
torch.cuda.manual_seed(seed)
if (coarse_context is not None) and (feats.shape[2:] != coarse_context.shape[2:]):
preds_stage2 = self.decoder_stage2(
torch.cat([feats, id_context] if coarse_context is None else [
F.interpolate(feats, size=coarse_context.size()[2:], mode='bilinear', align_corners=self.align_corners),
F.interpolate(id_context, size=coarse_context.size()[2:], mode='bilinear', align_corners=self.align_corners),
coarse_context
], dim=1)
)
else:
preds_stage2 = self.decoder_stage2(torch.cat([feats, id_context] if coarse_context is None else [feats, id_context, coarse_context], dim=1))
# forward according to the mode
if self.mode in ['TRAIN', 'TRAIN_DEVELOP']:
# --statistical inference
with torch.no_grad():
# ----select intervention clsids
intervention_clsids = []
for batch_idx in range(feats.shape[0]):
valid_clsids = valid_clsids_batch[batch_idx]
choice_weights = []
for intervention_clsid in valid_clsids:
choice_weights.append(1.0 / float(self.selected_classes_counter.data[intervention_clsid].item()))
choice_weights = np.array(choice_weights) / sum(choice_weights)
intervention_clsid = random.choices(valid_clsids, weights=choice_weights, k=1)[0]
intervention_clsids.append(intervention_clsid)
self.selected_classes_counter.data[intervention_clsid] = self.selected_classes_counter.data[intervention_clsid] + 1.0
# ----update class_relations
momentum = self.cfg['head']['clsrelation_momentum']
id_context_mean, _ = self.obtainidcontext(feats_withdl, preds_stage1, self.class_relations_mean, intervention_clsids)
id_context_var, _ = self.obtainidcontext(feats_withdl, preds_stage1, self.class_relations_var, intervention_clsids, False)
id_context = self.idcontext_refiner(torch.cat([feats_withdl, id_context_mean, id_context_var], dim=1), torch.cat([feats_withdl, id_context_mean, id_context_var], dim=1))
torch.cuda.manual_seed(seed)
if (coarse_context is not None) and (feats.shape[2:] != coarse_context.shape[2:]):
preds_intervention_stage2 = self.decoder_stage2(
torch.cat([feats, id_context] if coarse_context is None else [
F.interpolate(feats, size=coarse_context.size()[2:], mode='bilinear', align_corners=self.align_corners),
F.interpolate(id_context, size=coarse_context.size()[2:], mode='bilinear', align_corners=self.align_corners),
coarse_context
], dim=1)
)
else:
preds_intervention_stage2 = self.decoder_stage2(torch.cat([feats, id_context] if coarse_context is None else [feats, id_context, coarse_context], dim=1))
preds_intervention_stage2 = F.interpolate(preds_intervention_stage2, size=img_size, mode='bilinear', align_corners=self.align_corners)
preds_intervention_stage2 = preds_intervention_stage2.permute(0, 2, 3, 1).contiguous()
preds_anchor_stage2 = F.interpolate(preds_stage2, size=img_size, mode='bilinear', align_corners=self.align_corners)
preds_anchor_stage2 = preds_anchor_stage2.permute(0, 2, 3, 1).contiguous()
for batch_idx in range(feats.shape[0]):
gts_iter = data_meta.getannotations()['seg_targets'][batch_idx]
clsids = data_meta.getannotations()['seg_targets'][batch_idx].unique()
logits_intervention_stage2_iter, logits_anchor_stage2_iter = preds_intervention_stage2[batch_idx], preds_anchor_stage2[batch_idx]
for clsid in clsids:
clsid = int(clsid.item())
if clsid == self.cfg['head']['ignore_index']: continue
gts_iter_cls = gts_iter[gts_iter == clsid].long()
loss_intervention_stage2 = F.cross_entropy(logits_intervention_stage2_iter[gts_iter == clsid], gts_iter_cls, reduction='none')
loss_anchor_stage2 = F.cross_entropy(logits_anchor_stage2_iter[gts_iter == clsid], gts_iter_cls, reduction='none')
relation_mean_stage2 = loss_intervention_stage2.mean() - loss_anchor_stage2.mean()
self.class_relations_mean.data[intervention_clsids[batch_idx], clsid] = \
relation_mean_stage2 * momentum + self.class_relations_mean.data[intervention_clsids[batch_idx], clsid] * (1 - momentum)
if loss_anchor_stage2.shape[0] > 1:
relation_var_stage2 = loss_intervention_stage2.var(unbiased=False) - loss_anchor_stage2.var(unbiased=False)
self.class_relations_var.data[intervention_clsids[batch_idx], clsid] = \
relation_var_stage2 * momentum + self.class_relations_var.data[intervention_clsids[batch_idx], clsid] * (1 - momentum)
# ----syn
if dist.is_available() and dist.is_initialized():
syn_list = ['class_relations_mean', 'class_relations_var', 'selected_classes_counter']
for syn in syn_list:
attr = getattr(self, syn).data.clone()
dist.all_reduce(attr.div_(dist.get_world_size()), op=dist.ReduceOp.SUM)
setattr(self, syn, nn.Parameter(attr, requires_grad=False))
# --update dl_cls_representations
momentum = self.cfg['head']['dlclsreps_momentum']
self.updatedlclsreps(feats, data_meta.getannotations()['seg_targets'], momentum, img_size)
# --calculate losses
predictions = self.customizepredsandlosses(
seg_logits=preds_stage2, annotations=data_meta.getannotations(), backbone_outputs=backbone_outputs, losses_cfg=self.cfg['losses'], img_size=img_size, auto_calc_loss=False,
)
preds_stage2 = predictions.pop('loss_cls')
preds_stage1 = F.interpolate(preds_stage1, size=img_size, mode='bilinear', align_corners=self.align_corners)
predictions.update({'loss_cls_stage1': preds_stage1, 'loss_cls_stage2': preds_stage2})
loss, losses_log_dict = calculatelosses(
predictions=predictions, annotations=data_meta.getannotations(), losses_cfg=self.cfg['losses'], pixel_sampler=self.pixel_sampler
)
ssseg_outputs = SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict) if self.mode == 'TRAIN' else SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict, seg_logits=preds_stage2)
else:
ssseg_outputs = SSSegOutputStructure(mode=self.mode, seg_logits=preds_stage2)
return ssseg_outputs
'''insertdlrepresentations'''
def insertdlrepresentations(self, feats, logits):
# dl_cls_representations: (num_classes, C)
dl_cls_representations = self.dl_cls_representations.data.type_as(feats).clone()
# feats: (batch_size, H, W, C)
feats = feats.permute(0, 2, 3, 1).contiguous()
# logits: (batch_size, H, W, num_classes)
logits = logits.permute(0, 2, 3, 1).contiguous()
# logits_argmax: (batch_size, H, W)
logits_argmax = logits.argmax(-1)
# start to insert
feats_withdl = torch.zeros(feats.shape[0], feats.shape[1], feats.shape[2], feats.shape[3] * 2).type_as(feats)
for cls_id in range(self.cfg['num_classes']):
mask = (logits_argmax == cls_id)
if mask.sum() == 0: continue
feats_withdl[mask] = torch.cat([feats[mask], dl_cls_representations[cls_id].unsqueeze(0).expand_as(feats[mask])], dim=1)
feats_withdl = feats_withdl.permute(0, 3, 1, 2).contiguous()
# return
return feats_withdl
'''obtainidcontext'''
def obtainidcontext(self, context, logits, class_relations, intervention_clsids=None, remove_negative_cls_relation=True):
# obtain intervention-driven contextual information
batch_size, num_channels, context_h, context_w = context.size()
valid_clsids_batch, id_context_batch = [], torch.zeros_like(context)
class_relations = class_relations.data.type_as(context).clone()
for batch_idx in range(batch_size):
# --context: (num_existing_classes, C), selected_class_relations: (num_classes, num_existing_classes)
cls_contexts, selected_class_relations = [], []
# --context_iter: (C, H, W), logits_iter: (num_classes, H, W)
context_iter, logits_iter = context[batch_idx], logits[batch_idx]
# --context_iter: (C, H*W), logits_iter: (num_classes, H*W)
context_iter, logits_iter = context_iter.reshape(num_channels, -1), logits_iter.reshape(self.cfg['num_classes'], -1)
# --context_iter: (H*W, C)
context_iter = context_iter.permute(1, 0).contiguous()
# --logits_iter_argmax: (H*W,)
logits_iter_argmax = logits_iter.argmax(0)
valid_clsids = []
for cls_id in range(self.cfg['num_classes']):
# --remove intervention clsids
if intervention_clsids is not None:
if cls_id == intervention_clsids[batch_idx]:
continue
# --mask: (H*W,)
mask = (logits_iter_argmax == cls_id)
if mask.sum() == 0: continue
# --context_iter_cls: (N, C)
context_iter_cls = context_iter[mask]
# --weight: (N,)
logits_iter_cls = logits_iter[cls_id, :][mask]
weight = F.softmax(logits_iter_cls, dim=0)
# --context_iter_cls: (N, C)
context_iter_cls = context_iter_cls * weight.unsqueeze(-1)
# --context_iter_cls: (C,)
context_iter_cls = context_iter_cls.sum(0)
# --append
valid_clsids.append(cls_id)
cls_contexts.append(context_iter_cls)
selected_class_relations.append(class_relations[:, cls_id].unsqueeze(1))
if len(cls_contexts) != 0:
valid_clsids_batch.append(valid_clsids)
cls_contexts = torch.stack(cls_contexts)
selected_class_relations = torch.cat(selected_class_relations, dim=1)
if remove_negative_cls_relation:
selected_class_relations[selected_class_relations <= 0] = -1e16
selected_class_relations = F.softmax(selected_class_relations, dim=1)
selected_class_relations_tmp = []
for cls_id in valid_clsids:
selected_class_relations_tmp.append(selected_class_relations[cls_id, :])
selected_class_relations = torch.stack(selected_class_relations_tmp)
# --id_context_tmp: (num_existing_classes, C)
id_context_tmp = torch.matmul(selected_class_relations, cls_contexts)
# --id_context: (H*W, C)
id_context = torch.zeros(context_h * context_w, num_channels).type_as(context)
# --insert
for idx, cls_id in enumerate(valid_clsids):
mask = (logits_iter_argmax == cls_id)
assert mask.sum() > 0, 'mask assert error, bug exists'
id_context[mask] = id_context_tmp[idx]
# --id_context: (C, H*W)
id_context = id_context.permute(1, 0).contiguous()
# --id_context: (C, H, W)
id_context = id_context.reshape(num_channels, context_h, context_w)
# --append
id_context_batch[batch_idx] = id_context
# return
return id_context_batch, valid_clsids_batch
'''updatedlclsreps'''
def updatedlclsreps(self, feats, gts, momentum, img_size):
with torch.no_grad():
# feats: (B, H, W, C)
feats = F.interpolate(feats, size=img_size, mode='bilinear', align_corners=self.align_corners)
feats = feats.permute(0, 2, 3, 1).contiguous()
# iter clsids
unique_cls_ids = gts.unique()
for cls_id in unique_cls_ids:
cls_id = int(cls_id.item())
if cls_id == self.cfg['head']['ignore_index']: continue
# --feats_cls: (C,)
feats_cls = feats[gts == cls_id].mean(0)
# --update
self.dl_cls_representations.data[cls_id, :] = feats_cls * momentum + self.dl_cls_representations[cls_id, :].clone() * (1 - momentum)
# sync
if dist.is_available() and dist.is_initialized():
dl_cls_representations = self.dl_cls_representations.data.clone()
dist.all_reduce(dl_cls_representations.div_(dist.get_world_size()), op=dist.ReduceOp.SUM)
self.dl_cls_representations = nn.Parameter(dl_cls_representations, requires_grad=False)