-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathisnet.py
108 lines (106 loc) · 5.92 KB
/
isnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
'''
Function:
Implementation of ISNet
Author:
Zhenchao Jin
'''
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..base import BaseSegmentor
from ...losses import calculatelosses
from .imagelevel import ImageLevelContext
from ....utils import SSSegOutputStructure
from .semanticlevel import SemanticLevelContext
from ...backbones import BuildActivation, BuildNormalization
'''ISNet'''
class ISNet(BaseSegmentor):
def __init__(self, cfg, mode):
super(ISNet, self).__init__(cfg, mode)
align_corners, norm_cfg, act_cfg, head_cfg = self.align_corners, self.norm_cfg, self.act_cfg, cfg['head']
# build bottleneck
self.bottleneck = nn.Sequential(
nn.Conv2d(head_cfg['in_channels'], head_cfg['feats_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
# build image-level context module
ilc_cfg = {
'feats_channels': head_cfg['feats_channels'], 'transform_channels': head_cfg['transform_channels'], 'concat_input': head_cfg['concat_input'],
'norm_cfg': copy.deepcopy(norm_cfg), 'act_cfg': copy.deepcopy(act_cfg), 'align_corners': align_corners,
}
self.ilc_net = ImageLevelContext(**ilc_cfg)
# build semantic-level context module
slc_cfg = {
'feats_channels': head_cfg['feats_channels'], 'transform_channels': head_cfg['transform_channels'], 'concat_input': head_cfg['concat_input'],
'norm_cfg': copy.deepcopy(norm_cfg), 'act_cfg': copy.deepcopy(act_cfg),
}
self.slc_net = SemanticLevelContext(**slc_cfg)
# build decoder
self.decoder_stage1 = nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'], head_cfg['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['feats_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0)
)
if head_cfg['shortcut']['is_on']:
self.shortcut = nn.Sequential(
nn.Conv2d(head_cfg['shortcut']['in_channels'], head_cfg['shortcut']['feats_channels'], kernel_size=1, stride=1, padding=0),
BuildNormalization(placeholder=head_cfg['shortcut']['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
self.decoder_stage2 = nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'] + head_cfg['shortcut']['feats_channels'], head_cfg['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['feats_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0)
)
else:
self.decoder_stage2 = nn.Sequential(
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['feats_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0)
)
# build auxiliary decoder
self.setauxiliarydecoder(cfg['auxiliary'])
# freeze normalization layer if necessary
if cfg.get('is_freeze_norm', False): self.freezenormalization()
'''forward'''
def forward(self, data_meta):
img_size = data_meta.images.size(2), data_meta.images.size(3)
# feed to backbone network
backbone_outputs = self.transforminputs(self.backbone_net(data_meta.images), selected_indices=self.cfg['backbone'].get('selected_indices'))
# feed to bottleneck
feats = self.bottleneck(backbone_outputs[-1])
# feed to image-level context module
feats_il = self.ilc_net(feats)
# feed to decoder stage1
preds_stage1 = self.decoder_stage1(feats)
# feed to semantic-level context module
preds = preds_stage1
if preds_stage1.size()[2:] != feats.size()[2:]:
preds = F.interpolate(preds_stage1, size=feats.size()[2:], mode='bilinear', align_corners=self.align_corners)
feats_sl = self.slc_net(feats, preds, feats_il)
# feed to decoder stage2
if hasattr(self, 'shortcut'):
shortcut_out = self.shortcut(backbone_outputs[0])
feats_sl = F.interpolate(feats_sl, size=shortcut_out.shape[2:], mode='bilinear', align_corners=self.align_corners)
feats_sl = torch.cat([feats_sl, shortcut_out], dim=1)
preds_stage2 = self.decoder_stage2(feats_sl)
# return according to the mode
if self.mode in ['TRAIN', 'TRAIN_DEVELOP']:
predictions = self.customizepredsandlosses(
seg_logits=preds_stage2, annotations=data_meta.getannotations(), backbone_outputs=backbone_outputs, losses_cfg=self.cfg['losses'], img_size=img_size, auto_calc_loss=False,
)
preds_stage2 = predictions.pop('loss_cls')
preds_stage1 = F.interpolate(preds_stage1, size=img_size, mode='bilinear', align_corners=self.align_corners)
predictions.update({'loss_cls_stage1': preds_stage1, 'loss_cls_stage2': preds_stage2})
loss, losses_log_dict = calculatelosses(
predictions=predictions, annotations=data_meta.getannotations(), losses_cfg=self.cfg['losses'], pixel_sampler=self.pixel_sampler
)
ssseg_outputs = SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict) if self.mode == 'TRAIN' else SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict, seg_logits=preds_stage2)
else:
ssseg_outputs = SSSegOutputStructure(mode=self.mode, seg_logits=preds_stage2)
return ssseg_outputs