forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dockerfile
94 lines (84 loc) · 3.46 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
FROM ubuntu:16.10
ENV SYNTAXNETDIR=/opt/tensorflow PATH=$PATH:/root/bin
# Install system packages. This doesn't include everything the TensorFlow
# dockerfile specifies, so if anything goes awry, maybe install more packages
# from there. Also, running apt-get clean before further commands will make the
# Docker images smaller.
RUN mkdir -p $SYNTAXNETDIR \
&& cd $SYNTAXNETDIR \
&& apt-get update \
&& apt-get install -y \
file \
git \
graphviz \
libcurl3-dev \
libfreetype6-dev \
libgraphviz-dev \
liblapack-dev \
libopenblas-dev \
libpng-dev \
libxft-dev \
openjdk-8-jdk \
python-dev \
python-mock \
python-pip \
python2.7 \
swig \
unzip \
vim \
wget \
zlib1g-dev \
&& apt-get clean \
&& (rm -f /var/cache/apt/archives/*.deb \
/var/cache/apt/archives/partial/*.deb /var/cache/apt/*.bin || true)
# Install common Python dependencies. Similar to above, remove caches
# afterwards to help keep Docker images smaller.
RUN pip install --ignore-installed pip \
&& python -m pip install numpy \
&& rm -rf /root/.cache/pip /tmp/pip*
RUN python -m pip install \
asciitree \
ipykernel \
jupyter \
matplotlib \
pandas \
protobuf \
scipy \
sklearn \
&& python -m ipykernel.kernelspec \
&& python -m pip install pygraphviz \
--install-option="--include-path=/usr/include/graphviz" \
--install-option="--library-path=/usr/lib/graphviz/" \
&& python -m jupyter_core.command nbextension enable \
--py --sys-prefix widgetsnbextension \
&& rm -rf /root/.cache/pip /tmp/pip*
# Installs Bazel.
RUN wget --quiet https://github.com/bazelbuild/bazel/releases/download/0.8.1/bazel-0.8.1-installer-linux-x86_64.sh \
&& chmod +x bazel-0.8.1-installer-linux-x86_64.sh \
&& ./bazel-0.8.1-installer-linux-x86_64.sh \
&& rm ./bazel-0.8.1-installer-linux-x86_64.sh
COPY WORKSPACE $SYNTAXNETDIR/syntaxnet/WORKSPACE
COPY tools/bazel.rc $SYNTAXNETDIR/syntaxnet/tools/bazel.rc
COPY tensorflow $SYNTAXNETDIR/syntaxnet/tensorflow
# Compile common TensorFlow targets, which don't depend on DRAGNN / SyntaxNet
# source. This makes it more convenient to re-compile DRAGNN / SyntaxNet for
# development (though not as convenient as the docker-devel scripts).
RUN cd $SYNTAXNETDIR/syntaxnet/tensorflow \
&& tensorflow/tools/ci_build/builds/configured CPU \
&& cd $SYNTAXNETDIR/syntaxnet \
&& bazel build -c opt @org_tensorflow//tensorflow:tensorflow_py
# Build the codez.
WORKDIR $SYNTAXNETDIR/syntaxnet
COPY dragnn $SYNTAXNETDIR/syntaxnet/dragnn
COPY syntaxnet $SYNTAXNETDIR/syntaxnet/syntaxnet
COPY third_party $SYNTAXNETDIR/syntaxnet/third_party
COPY util/utf8 $SYNTAXNETDIR/syntaxnet/util/utf8
RUN bazel build -c opt //dragnn/python:all //dragnn/tools:all
# This makes the IP exposed actually "*"; we'll do host restrictions by passing
# a hostname to the `docker run` command.
COPY tensorflow/tensorflow/tools/docker/jupyter_notebook_config.py /root/.jupyter/
EXPOSE 8888
# This does not need to be compiled, only copied.
COPY examples $SYNTAXNETDIR/syntaxnet/examples
# Todo: Move this earlier in the file (don't want to invalidate caches for now).
CMD /bin/bash -c "bazel-bin/dragnn/tools/oss_notebook_launcher notebook --debug --notebook-dir=/opt/tensorflow/syntaxnet/examples"