forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
labeled_eval_test.py
86 lines (74 loc) · 3.12 KB
/
labeled_eval_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tcn.labeled_eval."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import labeled_eval
import tensorflow as tf
class LabeledEvalTest(tf.test.TestCase):
def testNearestCrossSequenceNeighbors(self):
# Generate embeddings.
num_data = 64
embedding_size = 4
num_tasks = 8
n_neighbors = 2
data = np.random.randn(num_data, embedding_size)
tasks = np.repeat(range(num_tasks), num_data // num_tasks)
# Get nearest cross-sequence indices.
indices = labeled_eval.nearest_cross_sequence_neighbors(
data, tasks, n_neighbors=n_neighbors)
# Assert that no nearest neighbor indices come from the same task.
repeated_tasks = np.tile(np.reshape(tasks, (num_data, 1)), n_neighbors)
self.assertTrue(np.all(np.not_equal(repeated_tasks, tasks[indices])))
def testPerfectCrossSequenceRecall(self):
# Make sure cross-sequence recall@k returns 1.0 for near-duplicate features.
embeddings = np.random.randn(10, 2)
embeddings[5:, :] = 0.00001 + embeddings[:5, :]
tasks = np.repeat([0, 1], 5)
labels = np.array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4])
# find k=1, k=2 nearest neighbors.
k_list = [1, 2]
# Compute knn indices.
indices = labeled_eval.nearest_cross_sequence_neighbors(
embeddings, tasks, n_neighbors=max(k_list))
retrieved_labels = labels[indices]
recall_list = labeled_eval.compute_cross_sequence_recall_at_k(
retrieved_labels=retrieved_labels,
labels=labels,
k_list=k_list)
self.assertTrue(np.allclose(
np.array(recall_list), np.array([1.0, 1.0])))
def testRelativeRecall(self):
# Make sure cross-sequence recall@k is strictly non-decreasing over k.
num_data = 100
num_tasks = 10
embeddings = np.random.randn(100, 5)
tasks = np.repeat(range(num_tasks), num_data // num_tasks)
labels = np.random.randint(0, 5, 100)
k_list = [1, 2, 4, 8, 16, 32, 64]
indices = labeled_eval.nearest_cross_sequence_neighbors(
embeddings, tasks, n_neighbors=max(k_list))
retrieved_labels = labels[indices]
recall_list = labeled_eval.compute_cross_sequence_recall_at_k(
retrieved_labels=retrieved_labels,
labels=labels,
k_list=k_list)
recall_list_sorted = sorted(recall_list)
self.assertTrue(np.allclose(
np.array(recall_list), np.array(recall_list_sorted)))
if __name__ == "__main__":
tf.test.main()