forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prediction_train.py
252 lines (200 loc) · 8.61 KB
/
prediction_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Code for training the prediction model."""
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import app
from tensorflow.python.platform import flags
from prediction_input import build_tfrecord_input
from prediction_model import construct_model
# How often to record tensorboard summaries.
SUMMARY_INTERVAL = 40
# How often to run a batch through the validation model.
VAL_INTERVAL = 200
# How often to save a model checkpoint
SAVE_INTERVAL = 2000
# tf record data location:
DATA_DIR = 'push/push_train'
# local output directory
OUT_DIR = '/tmp/data'
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', DATA_DIR, 'directory containing data.')
flags.DEFINE_string('output_dir', OUT_DIR, 'directory for model checkpoints.')
flags.DEFINE_string('event_log_dir', OUT_DIR, 'directory for writing summary.')
flags.DEFINE_integer('num_iterations', 100000, 'number of training iterations.')
flags.DEFINE_string('pretrained_model', '',
'filepath of a pretrained model to initialize from.')
flags.DEFINE_integer('sequence_length', 10,
'sequence length, including context frames.')
flags.DEFINE_integer('context_frames', 2, '# of frames before predictions.')
flags.DEFINE_integer('use_state', 1,
'Whether or not to give the state+action to the model')
flags.DEFINE_string('model', 'CDNA',
'model architecture to use - CDNA, DNA, or STP')
flags.DEFINE_integer('num_masks', 10,
'number of masks, usually 1 for DNA, 10 for CDNA, STN.')
flags.DEFINE_float('schedsamp_k', 900.0,
'The k hyperparameter for scheduled sampling,'
'-1 for no scheduled sampling.')
flags.DEFINE_float('train_val_split', 0.95,
'The percentage of files to use for the training set,'
' vs. the validation set.')
flags.DEFINE_integer('batch_size', 32, 'batch size for training')
flags.DEFINE_float('learning_rate', 0.001,
'the base learning rate of the generator')
## Helper functions
def peak_signal_to_noise_ratio(true, pred):
"""Image quality metric based on maximal signal power vs. power of the noise.
Args:
true: the ground truth image.
pred: the predicted image.
Returns:
peak signal to noise ratio (PSNR)
"""
return 10.0 * tf.log(1.0 / mean_squared_error(true, pred)) / tf.log(10.0)
def mean_squared_error(true, pred):
"""L2 distance between tensors true and pred.
Args:
true: the ground truth image.
pred: the predicted image.
Returns:
mean squared error between ground truth and predicted image.
"""
return tf.reduce_sum(tf.square(true - pred)) / tf.to_float(tf.size(pred))
class Model(object):
def __init__(self,
images=None,
actions=None,
states=None,
sequence_length=None,
reuse_scope=None,
prefix=None):
if sequence_length is None:
sequence_length = FLAGS.sequence_length
if prefix is None:
prefix = tf.placeholder(tf.string, [])
self.prefix = prefix
self.iter_num = tf.placeholder(tf.float32, [])
summaries = []
# Split into timesteps.
actions = tf.split(axis=1, num_or_size_splits=int(actions.get_shape()[1]), value=actions)
actions = [tf.squeeze(act) for act in actions]
states = tf.split(axis=1, num_or_size_splits=int(states.get_shape()[1]), value=states)
states = [tf.squeeze(st) for st in states]
images = tf.split(axis=1, num_or_size_splits=int(images.get_shape()[1]), value=images)
images = [tf.squeeze(img) for img in images]
if reuse_scope is None:
gen_images, gen_states = construct_model(
images,
actions,
states,
iter_num=self.iter_num,
k=FLAGS.schedsamp_k,
use_state=FLAGS.use_state,
num_masks=FLAGS.num_masks,
cdna=FLAGS.model == 'CDNA',
dna=FLAGS.model == 'DNA',
stp=FLAGS.model == 'STP',
context_frames=FLAGS.context_frames)
else: # If it's a validation or test model.
with tf.variable_scope(reuse_scope, reuse=True):
gen_images, gen_states = construct_model(
images,
actions,
states,
iter_num=self.iter_num,
k=FLAGS.schedsamp_k,
use_state=FLAGS.use_state,
num_masks=FLAGS.num_masks,
cdna=FLAGS.model == 'CDNA',
dna=FLAGS.model == 'DNA',
stp=FLAGS.model == 'STP',
context_frames=FLAGS.context_frames)
# L2 loss, PSNR for eval.
loss, psnr_all = 0.0, 0.0
for i, x, gx in zip(
range(len(gen_images)), images[FLAGS.context_frames:],
gen_images[FLAGS.context_frames - 1:]):
recon_cost = mean_squared_error(x, gx)
psnr_i = peak_signal_to_noise_ratio(x, gx)
psnr_all += psnr_i
summaries.append(
tf.summary.scalar(prefix + '_recon_cost' + str(i), recon_cost))
summaries.append(tf.summary.scalar(prefix + '_psnr' + str(i), psnr_i))
loss += recon_cost
for i, state, gen_state in zip(
range(len(gen_states)), states[FLAGS.context_frames:],
gen_states[FLAGS.context_frames - 1:]):
state_cost = mean_squared_error(state, gen_state) * 1e-4
summaries.append(
tf.summary.scalar(prefix + '_state_cost' + str(i), state_cost))
loss += state_cost
summaries.append(tf.summary.scalar(prefix + '_psnr_all', psnr_all))
self.psnr_all = psnr_all
self.loss = loss = loss / np.float32(len(images) - FLAGS.context_frames)
summaries.append(tf.summary.scalar(prefix + '_loss', loss))
self.lr = tf.placeholder_with_default(FLAGS.learning_rate, ())
self.train_op = tf.train.AdamOptimizer(self.lr).minimize(loss)
self.summ_op = tf.summary.merge(summaries)
def main(unused_argv):
print('Constructing models and inputs.')
with tf.variable_scope('model', reuse=None) as training_scope:
images, actions, states = build_tfrecord_input(training=True)
model = Model(images, actions, states, FLAGS.sequence_length,
prefix='train')
with tf.variable_scope('val_model', reuse=None):
val_images, val_actions, val_states = build_tfrecord_input(training=False)
val_model = Model(val_images, val_actions, val_states,
FLAGS.sequence_length, training_scope, prefix='val')
print('Constructing saver.')
# Make saver.
saver = tf.train.Saver(
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES), max_to_keep=0)
# Make training session.
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter(
FLAGS.event_log_dir, graph=sess.graph, flush_secs=10)
if FLAGS.pretrained_model:
saver.restore(sess, FLAGS.pretrained_model)
tf.train.start_queue_runners(sess)
tf.logging.info('iteration number, cost')
# Run training.
for itr in range(FLAGS.num_iterations):
# Generate new batch of data.
feed_dict = {model.iter_num: np.float32(itr),
model.lr: FLAGS.learning_rate}
cost, _, summary_str = sess.run([model.loss, model.train_op, model.summ_op],
feed_dict)
# Print info: iteration #, cost.
tf.logging.info(str(itr) + ' ' + str(cost))
if (itr) % VAL_INTERVAL == 2:
# Run through validation set.
feed_dict = {val_model.lr: 0.0,
val_model.iter_num: np.float32(itr)}
_, val_summary_str = sess.run([val_model.train_op, val_model.summ_op],
feed_dict)
summary_writer.add_summary(val_summary_str, itr)
if (itr) % SAVE_INTERVAL == 2:
tf.logging.info('Saving model.')
saver.save(sess, FLAGS.output_dir + '/model' + str(itr))
if (itr) % SUMMARY_INTERVAL:
summary_writer.add_summary(summary_str, itr)
tf.logging.info('Saving model.')
saver.save(sess, FLAGS.output_dir + '/model')
tf.logging.info('Training complete')
tf.logging.flush()
if __name__ == '__main__':
app.run()