-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_gen_spec.py
84 lines (72 loc) · 3.01 KB
/
test_gen_spec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from keras.models import Sequential, load_model
from keras.layers.core import Dense, Dropout, Activation,Flatten
from keras.layers.recurrent import LSTM, GRU, SimpleRNN
from keras.layers.convolutional import Convolution2D, Convolution1D, MaxPooling2D, MaxPooling1D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import ELU, PReLU, LeakyReLU
from keras.layers.wrappers import TimeDistributed
from keras.optimizers import SGD, Adagrad, RMSprop
from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping
from keras.utils.io_utils import HDF5Matrix
from scipy import signal
import scipy.io
import scipy.io.wavfile as wav
import numpy as np
import h5py
import librosa
import sys
import os
def make_spectrum_phase(y, FRAMESIZE, OVERLAP, FFTSIZE):
D=librosa.stft(y,n_fft=FRAMESIZE,hop_length=OVERLAP,win_length=FFTSIZE,window=scipy.signal.hamming)
Sxx = np.log10(abs(D)**2)
print(str(D) + " the value for D")
phase = np.exp(1j * np.angle(D))
print(str(phase) + " the value of phase")
mean = np.mean(Sxx, axis=1).reshape((257,1))
std = np.std(Sxx, axis=1).reshape((257,1))+1e-12
Sxx = (Sxx-mean)/std
return Sxx, phase, mean, std
def recons_spec_phase(Sxx_r, phase):
Sxx_r = np.sqrt(10**Sxx_r)
R = np.multiply(Sxx_r , phase)
result = librosa.istft(R,
hop_length=256,
win_length=512,
window=scipy.signal.hamming)
return result
def predict(modelpath, noisylistpath):
model=load_model(modelpath) #"weights/DNN_spec_20160425v2.hdf5"
FRAMESIZE = 512
OVERLAP = 256
FFTSIZE = 512
RATE = 16000
FRAMEWIDTH = 2
FBIN = FRAMESIZE//2+1
# noisylistpath = sys.argv[2]
noisylistpath = noisylistpath
with open(noisylistpath, 'r') as f:
for line in f:
print(line)
filename = line.split('/')[-1][:]
print(filename)
y,sr=librosa.load(line[:],sr=RATE)
training_data = np.empty((10000, FBIN, FRAMEWIDTH*2+1)) # For Noisy data
Sxx, phase, mean, std = make_spectrum_phase(y, FRAMESIZE, OVERLAP, FFTSIZE)
idx = 0
for i in range(FRAMEWIDTH, Sxx.shape[1]-FRAMEWIDTH): # 5 Frmae
training_data[idx,:,:] = Sxx[:,i-FRAMEWIDTH:i+FRAMEWIDTH+1] # For Noisy data
idx = idx + 1
X_train = training_data[:idx]
X_train = np.reshape(X_train,(idx,-1))
predict = model.predict(X_train)
count=0
for i in range(FRAMEWIDTH, Sxx.shape[1]-FRAMEWIDTH):
Sxx[:,i] = predict[count]
count+=1
# # The un-enhanced part of spec should be un-normalized
Sxx[:, :FRAMEWIDTH] = (Sxx[:, :FRAMEWIDTH] * std) + mean
Sxx[:, -FRAMEWIDTH:] = (Sxx[:, -FRAMEWIDTH:] * std) + mean
recons_y = recons_spec_phase(Sxx, phase)
output = librosa.util.fix_length(recons_y, y.shape[0])
wav.write("static/wav/enhanced.wav",RATE,np.int16(output*32767))
return os.path.join("static","wav","enhanced.wav")