Skip to content

Latest commit

 

History

History
77 lines (61 loc) · 2.62 KB

get_started.md

File metadata and controls

77 lines (61 loc) · 2.62 KB

Getting started with PaddleGAN

Note:

  • Before starting to use PaddleGAN, please make sure you have read the install document, and prepare the dataset according to the data preparation document
  • The following tutorial uses the train and evaluate of the CycleGAN model on the Cityscapes dataset as an example

Train

Train with single gpu

python -u tools/main.py --config-file configs/cyclegan_cityscapes.yaml

Args

  • --config-file (str): path of config file。

The output log, weight, and visualization result will be saved in ./output_dir by default, which can be modified by the output_dir parameter in the config file:

output_dir: output_dir

The saved folder will automatically generate a new directory based on the model name and timestamp. The directory example is as follows:

output_dir
└── CycleGANModel-2020-10-29-09-21
    ├── epoch_1_checkpoint.pkl
    ├── log.txt
    └── visual_train
        ├── epoch001_fake_A.png
        ├── epoch001_fake_B.png
        ├── epoch001_idt_A.png
        ├── epoch001_idt_B.png
        ├── epoch001_real_A.png
        ├── epoch001_real_B.png
        ├── epoch001_rec_A.png
        ├── epoch001_rec_B.png
        ├── epoch002_fake_A.png
        ├── epoch002_fake_B.png
        ├── epoch002_idt_A.png
        ├── epoch002_idt_B.png
        ├── epoch002_real_A.png
        ├── epoch002_real_B.png
        ├── epoch002_rec_A.png
        └── epoch002_rec_B.png

Also, you can add the parameter enable_visualdl: true in the configuration file, use PaddlePaddle VisualDL record the metrics or images generated in the training process, and run the command to monitor the training process:

visualdl --logdir output_dir/CycleGANModel-2020-10-29-09-21/

Recovery of training

The checkpoint of the previous epoch will be saved by default during the training process to facilitate the recovery of training

python -u tools/main.py --config-file configs/cyclegan_cityscapes.yaml --resume your_checkpoint_path

Args

  • --resume (str): path of checkpoint。

Train with multiple gpus:

CUDA_VISIBLE_DEVICES=0,1 python -m paddle.distributed.launch tools/main.py --config-file configs/cyclegan_cityscapes.yaml

evaluate

python tools/main.py --config-file configs/cyclegan_cityscapes.yaml --evaluate-only --load your_weight_path

Args

  • --evaluate-only: whether to evaluate only。
  • --load (str): path of weight。