Note:
- Before starting to use PaddleGAN, please make sure you have read the install document, and prepare the dataset according to the data preparation document
- The following tutorial uses the train and evaluate of the CycleGAN model on the Cityscapes dataset as an example
python -u tools/main.py --config-file configs/cyclegan_cityscapes.yaml
--config-file (str)
: path of config file。
The output log, weight, and visualization result will be saved in ./output_dir
by default, which can be modified by the output_dir
parameter in the config file:
output_dir: output_dir
The saved folder will automatically generate a new directory based on the model name and timestamp. The directory example is as follows:
output_dir
└── CycleGANModel-2020-10-29-09-21
├── epoch_1_checkpoint.pkl
├── log.txt
└── visual_train
├── epoch001_fake_A.png
├── epoch001_fake_B.png
├── epoch001_idt_A.png
├── epoch001_idt_B.png
├── epoch001_real_A.png
├── epoch001_real_B.png
├── epoch001_rec_A.png
├── epoch001_rec_B.png
├── epoch002_fake_A.png
├── epoch002_fake_B.png
├── epoch002_idt_A.png
├── epoch002_idt_B.png
├── epoch002_real_A.png
├── epoch002_real_B.png
├── epoch002_rec_A.png
└── epoch002_rec_B.png
Also, you can add the parameter enable_visualdl: true
in the configuration file, use PaddlePaddle VisualDL record the metrics or images generated in the training process, and run the command to monitor the training process:
visualdl --logdir output_dir/CycleGANModel-2020-10-29-09-21/
The checkpoint of the previous epoch will be saved by default during the training process to facilitate the recovery of training
python -u tools/main.py --config-file configs/cyclegan_cityscapes.yaml --resume your_checkpoint_path
--resume (str)
: path of checkpoint。
CUDA_VISIBLE_DEVICES=0,1 python -m paddle.distributed.launch tools/main.py --config-file configs/cyclegan_cityscapes.yaml
python tools/main.py --config-file configs/cyclegan_cityscapes.yaml --evaluate-only --load your_weight_path
--evaluate-only
: whether to evaluate only。--load (str)
: path of weight。