forked from rwightman/posenet-python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
webcam_demo.py
67 lines (53 loc) · 2.4 KB
/
webcam_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import tensorflow as tf
import cv2
import time
import argparse
import posenet
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=int, default=101)
parser.add_argument('--cam_id', type=int, default=0)
parser.add_argument('--cam_width', type=int, default=1280)
parser.add_argument('--cam_height', type=int, default=720)
parser.add_argument('--scale_factor', type=float, default=0.7125)
parser.add_argument('--file', type=str, default=None, help="Optionally use a video file instead of a live camera")
args = parser.parse_args()
def main():
with tf.Session() as sess:
model_cfg, model_outputs = posenet.load_model(args.model, sess)
output_stride = model_cfg['output_stride']
if args.file is not None:
cap = cv2.VideoCapture(args.file)
else:
cap = cv2.VideoCapture(args.cam_id)
cap.set(3, args.cam_width)
cap.set(4, args.cam_height)
start = time.time()
frame_count = 0
while True:
input_image, display_image, output_scale = posenet.read_cap(
cap, scale_factor=args.scale_factor, output_stride=output_stride)
heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = sess.run(
model_outputs,
feed_dict={'image:0': input_image}
)
pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multi.decode_multiple_poses(
heatmaps_result.squeeze(axis=0),
offsets_result.squeeze(axis=0),
displacement_fwd_result.squeeze(axis=0),
displacement_bwd_result.squeeze(axis=0),
output_stride=output_stride,
max_pose_detections=10,
min_pose_score=0.15)
keypoint_coords *= output_scale
# TODO this isn't particularly fast, use GL for drawing and display someday...
overlay_image = posenet.draw_skel_and_kp(
display_image, pose_scores, keypoint_scores, keypoint_coords,
min_pose_score=0.15, min_part_score=0.1, bgimage = False)
overlay_image = cv2.flip(overlay_image,1)
cv2.imshow('posenet', overlay_image)
frame_count += 1
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print('Average FPS: ', frame_count / (time.time() - start))
if __name__ == "__main__":
main()