This repo contains the code for neural network weight optimisation using 4 evolutionary algorithms, namely:
- Genetic Algorithm
- Cultural Algorithm
- Ant Colony Optimisation
- Particle Swarm Optimisation
Layer | Number of Neurons | Activation Function |
---|---|---|
Hidden | 12 | ReLU |
Hidden | 8 | ReLU |
Hidden | 16 | ReLU |
Hidden | 8 | ReLU |
Output | 2 | Softmax |
Generations | Ants | Decay Constant | Training Accuracy | Testing Accuracy |
---|---|---|---|---|
10 | 5 | 0.1 | 93.66% | 94.37% |
Generations | Population Size | Training Accuracy | Testing Accuracy |
---|---|---|---|
3 | 10 | 93% | 94% |
Generations | Population Size | Parent Selection | Number of Parents | Training Accuracy | Testing Accuracy |
---|---|---|---|---|---|
20 | 5 | Roulette Wheel | 2 | 93.66% | 94.37% |
Generations | Population Size | c1 | c2 | Inertial Weight | Fitness of Best Particle | Testing Accuracy |
---|---|---|---|---|---|---|
10 | 10 | 2 | 2 | 0.8 | 4.234 | 94% |
Montana, David J., and Lawrence Davis. "Training feedforward neural networks using genetic algorithms." IJCAI. Vol. 89. 1989.
Reynolds, Robert G. "An introduction to cultural algorithms." Proceedings of the 3rd annual conference on evolutionary programming, World Scientific Publishing. 1994.
Mavrovouniotis, Michalis, and Shengxiang Yang. "Evolving neural networks using ant colony optimization with pheromone trail limits." 2013 13th UK Workshop on Computational Intelligence (UKCI). IEEE, 2013.
Mazaheri, Pooria, et al. ‘Designing Artificial Neural Network Using Particle Swarm Optimization: A Survey’. Swarm Intelligence - Recent Advances and Current Applications, IntechOpen, 8 Feb. 2023. Crossref, doi:10.5772/intechopen.106139.