-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSalaryModel.py
33 lines (23 loc) · 876 Bytes
/
SalaryModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
dataset = pd.read_csv('Salary_Data.csv')
X = dataset.iloc[:,:-1].values
y = dataset.iloc[:,1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state=0)
regressor = LinearRegression()
regressor.fit(X_train,y_train)
y_pred = regressor.predict(X_test)
plt.scatter(X_train, y_train, color='red')
plt.plot(X_train, regressor.predict(X_train), color='blue')
plt.title('Salary vs Years of Experience')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()
plt.scatter(X_test, y_test, color='red')
plt.plot(X_train, regressor.predict(X_train), color='blue')
plt.title('Salary vs Years of Experience')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()