forked from dali92002/HTRbyMatching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
179 lines (140 loc) · 6.73 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from PIL import Image
import os
import torch
import sys
import cv2
import transforms as T
import torchvision.transforms as torchT
import torchvision.transforms.functional as TF
import utils
from configs import getOptions
import random
options = getOptions().parse()
cipher = options.cipher #"synthetic"#
alphabet = options.alphabet
resizing = options.resize
def get_data2(input_path,labeling=False):
all_imgs = {}
i = 1
with open(input_path,'r') as f:
print('Parsing annotation files')
for line in f:
sys.stdout.write('\r'+'idx=' + str(i))
i += 1
line_split = line.strip().split(',')
if not labeling:
(filename,x1,y1,x2,y2,class_name) = line_split
pseudo = False
else:
(filename,x1,y1,x2,y2,class_name,pseudo_v) = line_split
if pseudo_v=='no':
pseudo=False
else:
pseudo=True
# if i == 100:
# return all_imgs
if filename+"class"+class_name not in all_imgs:
all_imgs[filename+"class"+class_name] = {}
try:
img = cv2.imread(filename.split('.png')[0]+'.jpg')
(rows,cols) = img.shape[:2]
except:
img = cv2.imread(filename)#.split('.png')[0]+'.jpg')
(rows,cols) = img.shape[:2]
all_imgs[filename+"class"+class_name]['filepath'] = filename
all_imgs[filename+"class"+class_name]['class'] = class_name
all_imgs[filename+"class"+class_name]['width'] = cols
all_imgs[filename+"class"+class_name]['height'] = rows
all_imgs[filename+"class"+class_name]['bboxes'] = []
all_imgs[filename+"class"+class_name]['bboxes'].append({'class': 1,'x1': int(x1), 'x2': int(x2), 'y1': int(y1), 'y2': int(y2), 'score': 1,'pseudo':pseudo})
for key in (all_imgs):
if (key !=filename+"class"+class_name):
if(all_imgs[key]['filepath']==filename):
all_imgs[key]['bboxes'].append({'class': 0,'x1': int(x1), 'x2': int(x2), 'y1': int(y1), 'y2': int(y2)})
for box in all_imgs[key]['bboxes']:
if(box['class']==1):
box2 = {'class': 0,'x1': box['x1'], 'x2': box['x2'], 'y1': box['y1'], 'y2': box['y2']}
if (box2 not in all_imgs[filename+"class"+class_name]['bboxes']):
all_imgs[filename+"class"+class_name]['bboxes'].append(box2)
return all_imgs
class readQuerySupport(object):
def __init__(self, root,Xdata, augment, transforms):
self.Xdata = Xdata
self.root = root
self.transforms = transforms
self.augment = augment
self.listimg = list(sorted(self.Xdata.keys()))
self.imgs = []
for i in range (len(self.listimg)):
for c in range (augment):
self.imgs.append([self.listimg[i],c])
def __getitem__(self, idx):
img_path = self.imgs[idx][0]
images_choices = os.listdir(alphabet+'/'+cipher+'/'+self.Xdata[img_path]['class']+'/') ###########
random.shuffle(images_choices)
try:
img1 = Image.open(self.Xdata[img_path]['filepath']).convert("RGB")
except:
img1 = Image.open(self.Xdata[img_path]['filepath'].split('.png')[0]+'.jpg').convert("RGB")
try:
img2 = Image.open(alphabet+'/'+cipher+'/'+self.Xdata[img_path]['class']+'/'+random.choice(images_choices).split('.png')[0]+'.jpg').convert("RGB")
except:
img2 = Image.open(alphabet+'/'+cipher+'/'+self.Xdata[img_path]['class']+'/'+random.choice(images_choices).split('.jpg')[0]+'.jpg').convert("RGB")
image_size = img1.size
if resizing:
resize_factors = [2048/image_size[0], 128/image_size[1]]
image_size = [2048,128]
else:
resize_factors = [1,1]
num_objs = len(self.Xdata[img_path]['bboxes'])
boxes = []
labels = []
for j in range(num_objs):
xmin = int(self.Xdata[img_path]['bboxes'][j]['x1'] * resize_factors[0])
xmax = int(self.Xdata[img_path]['bboxes'][j]['x2'] * resize_factors[0])
ymin = int(self.Xdata[img_path]['bboxes'][j]['y1'] * resize_factors[1])
ymax = int(self.Xdata[img_path]['bboxes'][j]['y2'] * resize_factors[1])
boxes.append([xmin, ymin, xmax, ymax])
labels.append(self.Xdata[img_path]['bboxes'][j]['class'])
if resizing:
img1 = img1.resize((2048,128))
img2 = img2.resize((128,128))
boxes = torch.as_tensor(boxes, dtype=torch.float32)
# there is only one class
labels = torch.as_tensor(labels, dtype=torch.int64)
image_id = torch.tensor([idx])
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
# suppose all instances are not crowd
iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
target = {}
target["boxes"] = boxes
target["labels"] = labels
target["image_id"] = image_id
target["area"] = area
target["iscrowd"] = iscrowd
if self.transforms is not None:
# transform image 1
img1,target = self.transforms(img1,target)
i, j, h, w = torchT.RandomCrop.get_params(img1, output_size=(image_size[1]-8,image_size[0]))
img1 = TF.crop(img1, i, j, h, w)
img1 = torchT.Resize((image_size[1],image_size[0]))(img1)
# transform image 2
img2,_ = self.transforms(img2,None)#Fsupp.to_tensor(img2)#
i, j, h, w = torchT.RandomCrop.get_params(img2, output_size=(image_size[1]-8,image_size[1]-8))
img2 = TF.crop(img2, i, j, h, w)
img2 = torchT.Resize((image_size[1],image_size[1]))(img2)
img2 = torchT.RandomRotation(degrees=(-10, 10))(1-img2)
img2 = 1-img2
return img1, img2, target
def __len__(self):
return len(self.imgs)
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
return T.Compose(transforms)
def load_data(batch_s,shots_number,root,txtfile=None, L=None):
if txtfile:
L = get_data2(txtfile,False)
dataset_lab = readQuerySupport(root,L, shots_number,get_transform(train=False))
data_loader = torch.utils.data.DataLoader(dataset_lab, batch_size=batch_s, shuffle=True, num_workers=4, collate_fn=utils.collate_fn)
return dataset_lab,data_loader