forked from dali92002/HTRbyMatching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
154 lines (103 loc) · 4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torchvision
from src.faster_rcnn import FastRCNNPredictor ,TwoMLPHead
import torchvision
from src.faster_rcnn import FasterRCNN
from src.rpn import AnchorGenerator
import torchvision
from src.engine import train_one_epoch
import os
from load_data import load_data
from configs import getOptions
import htr_utils
options = getOptions().parse()
cipher = options.cipher
alphabet_path = options.alphabet
lines_path = options.lines
output_path = options.output
shots_number = options.shots
threshold = options.thresh
testing_model = options.testing_model
draw_and_read = htr_utils.draw_and_read
zid_read = htr_utils.zid_read
inttosymbs = htr_utils.inttosymbs
get_error_rate = htr_utils.get_error_rate
batch_size = options.batch_size
shots = options.shots
train_type = options.train_type
root = options.data_path
val_data_path = options.val_data_path
root_txt = options.data_path+'annotation/'+'runic'+'.txt'
shots_path = cipher+'_symbs'
val_lines_path = val_data_path+'/lines/'
val_text_path = val_data_path+'/gt/'
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
num_classes = 2
backbone = torchvision.models.vgg16(pretrained=True).features
backbone.out_channels = 512
anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))
roi_ouput_size = 7
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
output_size=roi_ouput_size,
sampling_ratio=2)
model = FasterRCNN(backbone,
num_classes=num_classes,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
backbone_output_size = 512
in_channels = 512
in_channels2 = backbone_output_size*roi_ouput_size**2
model.roi_heads.box_predictor = FastRCNNPredictor(in_channels, num_classes)
model.roi_heads.box_head = TwoMLPHead(in_channels2, in_channels)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=3,
gamma=0.1)
def get_gt():
gt = []
for x in list_lines[:]:
f = open(val_text_path+cipher+'/'+x.split('.jpg')[0]+'.txt', "r")
line = (f.read())
f.close()
gt.append(txt_to_int(line))
return gt
def txt_to_int(text):
res = []
alpha_f = os.listdir(alphabet_path+'/'+cipher)
text= text.split('\n')[0]
text = text.split(' ')
for c in text:
if c not in alpha_f:
res.append(-3) # if you want to ignore out of vocab symbols make it continue
elif c == 'space':
res.append(-2)
else:
res.append(alpha_f.index(c))
return (res)
if train_type == 'fine_tune':
model.load_state_dict(torch.load('weights/omniglot.pth'))
print("model loaded")
best_cer = 1
dataset,data_loader = load_data(batch_size,shots,root, root_txt)
print_fr = int(len(dataset)/batch_size/4)
# training here
for epoch in range(0, 45):
if epoch >-1:
list_lines = os.listdir(val_lines_path+cipher)[:2]
results = draw_and_read(model,list_lines,val_lines_path,cipher,shots)
gt = get_gt()
predictions = zid_read(results, read_space=False)[0]
cer = get_error_rate(gt,predictions)[0]
print('Validation CER: ',cer)
if cer<best_cer:
best_cer = cer
if not os.path.exists('weights'):
os.makedirs('weights')
torch.save(model.state_dict(), 'weights/best_model_'+cipher+'_.pth')
print('best Validation CER:', best_cer,'\n')
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=print_fr)