-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathslides.tex
525 lines (400 loc) · 14.5 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usetheme{CambridgeUS}
\usecolortheme{default}
\usepackage{tikz}
\usepackage{caption}
\captionsetup{font=scriptsize,labelfont=normalsize}
\captionsetup[figure]{labelformat=empty}
\captionsetup[table]{labelformat=empty}
\captionsetup[subfigure]{labelformat=empty}
\setbeamertemplate{caption}{\raggedright\insertcaption\par}
\newcommand{\smallindent}{\hphantom{N}}
\usepackage{lmodern}
\usepackage{siunitx}
\usepackage{booktabs}
\usepackage{etoolbox}
\usepackage{amsmath,amssymb}
\usepackage{graphicx}
\usepackage{subcaption}
\usepackage{xcolor,colortbl}
\definecolor{orange}{rgb}{0.8, 0.33, 0.0}
\definecolor{cblue}{rgb}{0.74, 0.83, 0.9}
\setbeamercolor{alerted text}{fg=orange}
\setbeamercolor*{palette primary}{fg = orange}
\setbeamercolor*{palette secondary}{fg = orange}
\setbeamercolor*{palette tertiary}{bg=orange, fg = white}
%\setbeamercolor*{palette quaternary}{bg=orange, fg = green}
\newcommand{\mycomment}[1]{}
%------------------------------------------------------------
%This block of code defines the information to appear in the
%Title page
\title[Master Thesis] %optional
{Advancing Packet-Level Traffic Predictions\\ with Transformers}
\date{\tiny September 1, 2022}
\author[ Siddhant Ray] % (optional)
{Siddhant Ray}
\institute[ETH Zürich] % (optional)
{
D-ITET \\
ETH Zürich
}
%\date[September 2022] % (optional)
\titlegraphic{
\includegraphics[width=3cm]{figures/nsg_logo.pdf}
\hspace{2cm}
\includegraphics[width=3cm]{figures/eth_logo.pdf}
}
%End of title page configuration block
%------------------------------------------------------------
%------------------------------------------------------------
%The next block of commands puts the table of contents at the
%beginning of each section and highlights the current section:
%\AtBeginSection[]
%{
% \begin{frame}
% \frametitle{Table of Contents}
% \tableofcontents[currentsection]
% \end{frame}
%}
%------------------------------------------------------------
\begin{document}
%The next statement creates the title page.
\frame{\titlepage}
%---------------------------------------------------------
%This block of code is for the table of contents after
%the title page
%\frametitle{Table of Contents}
%
%end{frame}
%---------------------------------------------------------
\section{Motivation}
\begin{frame}
\frametitle{Problems with machine learning methods in networks today}
\pause
\begin{itemize}
\item<1-> \alert{No generalization: } Only work on specific tasks trained on
\pause
\item<2-> \alert{Limited scope: } Models fail outside original training environment
\pause
\item<3-> \alert{Resource intensive: } Always re-doing training from scratch
\end{itemize}
\end{frame}
%---------------------------------------------------------
%Changing visivility of the text
\begin{frame}
\frametitle{Why use Transformers?}
\pause
\begin{itemize}
\item<1-> Efficient learning with \alert {\emph{attention}} mechanism
\item<1-> Generalizing using \alert{\emph{large datasets}} available
\pause
\item<2-> State-of-art for \alert{\emph{sequence}} learning problems
\item<2-> Network \alert{\emph{packet data}} is a sequence
\end{itemize}
\end{frame}
%---------------------------------------------------------
%Example of the \pause command
\begin{frame}
\frametitle{Transformer's unprecendented generalization in NLP \& CV}
\pause
BERT: Generalizing to many tasks in NLP
\begin{itemize}
\item<1-> Sentiment analysis
\item<1-> Question answering
\item<1-> Paraphrase detection
\end{itemize}
\pause
Vision Transformer: Generalizing to many tasks in CV
\begin{itemize}
\item<1-> Image classification
\item<1-> Object detection
\item<1-> Image segmentation
\end{itemize}
\end{frame}
%---------------------------------------------------------
\begin{frame}
\frametitle{Our Transformer prototype}
We present our Network Traffic Transformer (NTT):
\pause
\begin{figure}[!hbt]
\begin{center}
\includegraphics[scale=1.1]{figures/vision.pdf}
\caption{Pre-train today, fine-tune and re-use tomorrow}
\label{fig:vision}
\end{center}
\end{figure}
\end{frame}
%---------------------------------------------------------
\section{Design}
%---------------------------------------------------------
%Highlighting text
\begin{frame}
\frametitle{NTT needs networking domain specific features}
\pause
\begin{figure}[!hbt]
\begin{center}
\includegraphics[scale=0.8]{figures/architecture_ntt.pdf}
\caption{The Network Traffic Transformer (NTT) with
an embedding layer, % for feature extraction,
an aggregation layer, a transformer encoder
and a task-specific replaceable decoder.}
\label{fig:ntt}
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{NTT needs networking domain specific features}
Feature selection for initial NTT's input data:
\pause
\begin{itemize}
\item<1-> \alert{Relative timestamp:} To learn sequence order
\item<1-> \alert{End-to-end delay:} To learn network state information
\item<1-> \alert{Packet size:} To learn packet state information
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Training objectives for the NTT architecture}
NTT's learning objectives:
\pause
\begin{itemize}
\item<1-> \alert{Learn network dynamics:} Reconstruct masked delay values
\pause
\item<1-> \alert{Scale to large sequences:} Aggregate inputs ($ > 1000s$ of values)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Ensuring varied dynamics in our pre-training datasets}
\begin{figure}[h]
\begin{center}
\includegraphics[scale=0.8]{figures/simple_topo.pdf}
\caption{Initial topology for data generation}
\label{fig:topo}
\end{center}
\end{figure}
\pause
\begin{itemize}
\item<1-> Varied start times across sender application flows
\item<1-> Enough variance in pre-training data dynamics
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Ensuring varied dynamics in our pre-training datasets}
\begin{figure}[h]
\captionsetup[subfigure]{justification=centering}
\begin{subfigure}[h]{0.5\textwidth}
\begin{center}
\centering
\includegraphics[scale=0.5]{figures/delay.pdf}
\caption{Delay CDF, single simulation run}
\end{center}
\end{subfigure}%
~
\begin{subfigure}[h]{0.5\textwidth}
\begin{center}
\centering
\includegraphics[scale=0.5]{figures/queue_profile_A.pdf}
\caption{Bottleneck queue profile on the single-path topology}
\end{center}
\end{subfigure}
\caption{Distribution plots on pre-training data}
\label{fig:datadist}
\end{figure}
\end{frame}
%---------------------------------------------------------
\section{Evaluation}
%---------------------------------------------------------
%Two columns
\begin{frame}
\frametitle{Our NTT allows for generalization on network dynamics}
\begin{figure}[h]
\begin{center}
\includegraphics[scale=0.8]{figures/simple_topo_ft.pdf}
\caption{Fine-tuning data generation, single path topology}
\label{fig:topo_ft}
\end{center}
\end{figure}
\pause
\begin{itemize}
\item<1-> Two bottleneck dynamics to learn
\item<1-> Packet-level fine-tuning task : Predict last delay
\item<1-> Flow-level fine-tuning task : Predict Message Completion Time (MCT)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Our NTT allows for generalization on network dynamics}
\begin{table}[htbp]
\footnotesize
\centering
\sisetup{detect-weight,mode=text}
% for avoiding siunitx using bold extended
\renewrobustcmd{\bfseries}{\fontseries{b}\selectfont}
\renewrobustcmd{\boldmath}{}
\newrobustcmd{\B}{\bfseries}
\begin{tabular}{ l c c c }
\toprule
\emph{all values $\times10^{-3}$} & Pre-training & \multicolumn{2}{c}{Fine-tuning} \\
\cmidrule{3-4}
& {Delay} & {Delay} & {log (MCT)} \\
\midrule
\em{NTT} & & & \\
\rowcolor{cblue}
\smallindent Pre-trained & \B 0.072 & \B 0.097 & \B 65 \\
\smallindent From scratch & {-} & 0.313 & 117 \\
\noalign{\vskip 1mm}
\em{Baselines} \\
\smallindent ARMA & 1.800 & 1.180 &1412 \\
\smallindent Last observed & 0.142 & 0.121 & 2189 \\
\smallindent EWMA & 0.259 & 0.211 & 1147 \\
\noalign{\vskip 1mm}
\em{NTT (Ablated)} \\
\smallindent No aggregation & 0.258 & 0.430 & 61 \\
\smallindent Fixed aggregation & 0.055 & 0.134 & 115 \\[0.75mm]
\smallindent Without packet size & 0.001 & 8.688 & 94 \\
\smallindent Without delay & 15.797 & 10.898 & 802 \\
\bottomrule
\end{tabular}
\caption{Mean Squared Error (MSE) for all NTT models and tasks for the single path topology (lower is better)}
\label{eval:table1}
\end{table}
\end{frame}
\mycomment{
\begin{frame}
\frametitle{Variable masked pre-training}
Variable masking strategies: For \emph{bi-directional} learning
\pause
\begin{itemize}
\item<1-> Masking over last 16 delays, no mask over aggregates
\item<1-> Masking over last 32 delays, no mask over aggregates
\pause
\item<2-> Choose mask over encoded states, also mask over aggregates
\item<2-> Choose mask over aggregation levels, also mask over aggregates
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Variable masked pre-training}
\begin{figure}[h]
\centering
\begin{subfigure}[h]{0.5\textwidth}
\centering
\includegraphics[scale=0.5]{figures/finetune_mct_loss_comparison.pdf}
\caption{Pre-train with no mask over aggregated delays}
\end{subfigure}%
~
\begin{subfigure}[h]{0.5\textwidth}
\centering
\includegraphics[scale=0.5]{figures/finetune_mct_loss_comparison_agg.pdf}
\caption{Pre-train with also mask over aggregated delays}
\end{subfigure}
\caption{Mean-square error on MCT predictions with different pre-training masks}
\label{fig:mct_mask}
\end{figure}
\end{frame}
}
\begin{frame}
\frametitle{NTT works on multi-path topologies}
\begin{figure}[h]
\begin{center}
\includegraphics[scale=0.58]{figures/complex_topo.pdf}
\caption{Fine-tuning data generation on multi-path topology}
\label{fig:topo_ft_big}
\end{center}
\end{figure}
\pause
\vspace{-0.6cm}
\begin{itemize}
\item<1-> Path delays vary as per number of links
\item<1-> Receiver ID as IP address proxy
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{NTT works on multi-path topologies}
\begin{table}[htbp]
\scriptsize
\centering
\sisetup{detect-weight,mode=text}
% for avoiding siunitx using bold extended
\renewrobustcmd{\bfseries}{\fontseries{b}\selectfont}
\renewrobustcmd{\boldmath}{}
\newrobustcmd{\B}{\bfseries}
\begin{tabular}{ l c c }
\toprule
\emph{Model} & MSE: Delay Prediction & \# of Epochs \\
& \emph{all values$\times10^{-3}$} & trained \\
\midrule
\em{NTT} & \\
\rowcolor{cblue}
\smallindent Pre-trained + Fine-tune (full) & \B 0.004 & \B 5 \\
\rowcolor{cblue}
\smallindent Pre-trained + Fine-tune ($10\%$) & \B 0.035 & \B 12 \\
\smallindent From scratch + Fine-tune (full) & 5.2 & 10 \\
\smallindent From scratch + Fine-tune ($10\%$) & 8.2 & 15 \\
\em{Baselines} & \\
\smallindent ARMA & 4.2 & - \\
\smallindent Last observed & 11.2 & - \\
\smallindent EWMA & 4.0 & - \\
\em{NTT (Ablated)} & \\
\smallindent Pre-trained + Fine-tune (full) : No Receiver ID & 2.8 & 8 \\
\smallindent From scratch + Fine-tune (full) : No Receiver ID & 2.7 & 15 \\
\bottomrule
\end{tabular}
\caption{Fine-tuning NTT on the multi-path topology (lower is better)}
\label{eval:table5}
\end{table}
\end{frame}
%---------------------------------------------------------
\section{Future}
\begin{frame}
\frametitle{How do we improve the NTT further?}
\pause
\begin{itemize}
\item<1-> NTT Scaling
\begin{itemize}
\item<1-> Learn additional network features.
\item<1-> Learn on larger topologies.
\end{itemize}
\vspace{0.2cm}
\pause
\item<2-> Federated Learning
\begin{itemize}
\item<2-> Share models, not data.
\item<2->Keep data private.
\end{itemize}
\vspace{0.2cm}
\pause
\item<3-> Continual learning
\begin{itemize}
\item<3-> Re-train with time, prevent forgetting.
\item<3-> Learn evolved dynamics.
\end{itemize}
\end{itemize}
\end{frame}
\section{Concluding remarks}
\begin{frame}
\frametitle{Recap: Our NTT architecture demonstrates that}
%\pause
\mycomment{
\begin{figure}[h]
\begin{center}
\includegraphics[scale=0.55]{figures/questions.pdf}
\label{fig:questions}
\end{center}
\end{figure}
}
\begin{itemize}
\pause
\item<1-> Learning network dynamics is possible
\begin{itemize}
\item<1-> NTT learns network dynamics from packet sequences
\item<1-> Pre-trained NTT can be re-used easily
\end{itemize}
\vspace{0.2cm}
\pause
\item<2-> Generalizing power of the NTT
\begin{itemize}
\item<2-> Can generalize to new environments: Packet level
\item<2-> Can generalize to new tasks: Flow level
\end{itemize}
\end{itemize}
\end{frame}
\end{document}