-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgol.c
271 lines (236 loc) · 7.51 KB
/
gol.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <mpi.h>
#include <omp.h>
#define board(x, y, c) (board[((x) * (c)) + (y)])
#define live(i) ((board[(i)]) % 2)
void print_board(int* board, int rows, int columns){
for(int i = 0; i < rows; i++){
for(int j = 0; j < columns; j++)
printf("%d\n", board[i * columns + j]);
}
}
/* Step 6 : Function to iterate through all the elements of the board and move to the next step */
/* Rules for progress to next step:
* Live -> Live 1
* Live -> Dead 3
* Dead -> Dead 0
* Dead -> Live 2
* If value is 1 or 3 => live in current step.
* If value is 0 or 2 => dead in current step.
* If value is 2 or 3 => update in next step.
*/
void move_next_step(int rows, int c, int* board){
#pragma omp parallel for
for(int i = 0; i < rows * c; i++){
/* Living cell with less than 2 live neighbors dies */
/* Living cell with more than 3 live neighbors dies */
/* Dead cell with exactly 3 live neighbors spawns */
int live_nbr_count = 0;
if(i % c != 0){
live_nbr_count += live(i - c - 1);
live_nbr_count += live(i - 1);
live_nbr_count += live(i + c - 1);
}
live_nbr_count += live(i - c);
live_nbr_count += live(i + c);
/* Doing test in the middle - in case it reduces total no. of operations */
if(live_nbr_count > 3){
if(live(i))
/* Live cell will definitely die */
#pragma omp atomic write
board[i] = 3;
/* Dead cell definitely cannot live */
continue;
}
if((i + 1) % c != 0){
live_nbr_count += live(i - c + 1);
live_nbr_count += live(i + 1);
live_nbr_count += live(i + c + 1);
}
if(live(i)){
if(live_nbr_count != 3 && live_nbr_count != 2)
#pragma omp atomic write
board[i] = 3;
} else if(live_nbr_count == 3) {
#pragma omp atomic write
board[i] = 2;
}
}
}
int main(int argc, char *argv[]) {
int seed, rows, columns, generations;
char* filename = (char*) malloc(100 * sizeof(char));
int n_threads, world_size, rank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
/* Check command line arguments */
if (argc < 6) {
if (rank == 0)
printf("Usage: %s [num threads] [Seed] [Rows] [Columns] [Generations] <filename>\n", argv[0]);
exit (1);
}
sscanf(argv[1], "%d", &n_threads);
omp_set_num_threads(n_threads);
/* Parse the arguments */
sscanf(argv[2], "%d", &seed);
sscanf(argv[3], "%d", &rows);
sscanf(argv[4], "%d", &columns);
sscanf(argv[5], "%d", &generations);
bool interchanged = false;
/* Step 1: All processes intitalize entire board */
int** init_board = (int**) calloc(rows, sizeof(int*));
for(int i = 0; i < rows; i++)
init_board[i] = (int*) calloc(columns, sizeof(int));
if(argc == 7){
sscanf(argv[6], "%s", filename);
/* Read array from the file */
FILE* fin = fopen(filename, "r");
for(int i = 0; i < rows; i++)
for(int j = 0; j < columns; j++)
fscanf(fin, "%d", &init_board[i][j]);
fclose(fin);
} else {
srand(seed);
for(int i = 0; i < rows; i++)
for(int j = 0; j < columns; j++)
init_board[i][j] = rand() % 2;
}
free(filename);
/* We would like the number of rows to be greater than the number of columns.
* So, interchange if not true */
if(columns > rows){
int temp = columns;
columns = rows;
rows = temp;
interchanged = true;
}
/* Step 2: all processes find their chunk size */
/* Find row numbers for current process */
/* Doing equal work as much as possible by dividing remainder over all the remaining processes */
int row_start, row_end;
int chunk_size = (rows/world_size);
int rmdr = rows - chunk_size * world_size;
row_start = chunk_size * rank;
if(rank < rmdr){
chunk_size++;
row_start += rank;
}
else
row_start += rmdr;
row_end = row_start + chunk_size;
/* Board is a row wise flattened 1D structure */
int* board = (int*) calloc((chunk_size + 2) * columns, sizeof(int));
int row_size = columns * sizeof(int);
if(interchanged){
int offset = row_start - (rank != 0);
int i_range = chunk_size + (rank != 0) + (rank != world_size - 1);
int k = (rank == 0) * columns;
for(int i = 0; i < i_range; i++){
for(int j = 0; j < columns; j++){
board[k++] = init_board[j][offset];
}
offset++;
}
} else {
int src = row_start - (rank != 0);
int dest = (rank == 0) * columns;
int size = chunk_size + (rank != 0) + (rank != (world_size-1));
#pragma omp parallel for
for (int i = 0; i < size; ++i) {
memcpy(board + dest + i*columns, init_board[src+i], row_size);
}
}
free(init_board);
MPI_Request request[2], send_req[2];
MPI_Status recv_status[2];
int flag0, flag1;
for(int iter = 0; iter < generations; iter++){
flag0 = flag1 = 1;
/* Step 3 : Do non-blocking send and recv of previous and next rows except for the 1st iteration - all processes know everything */
if(iter != 0){
if(rank != 0){
flag0 = 0;
/* Receive previous row information - non blocking */
MPI_Irecv(board, columns, MPI_INT, rank - 1, 10, MPI_COMM_WORLD, &request[0]);
}
if(rank != world_size - 1){
flag1 = 0;
/* Receive next row information - non blocking */
MPI_Irecv(board + (chunk_size + 1) * columns, columns, MPI_INT, rank + 1, 11, MPI_COMM_WORLD, &request[1]);
}
if(rank != 0){
/* Send previous row information - non blocking*/
MPI_Isend(board + columns, columns, MPI_INT, rank - 1, 11, MPI_COMM_WORLD, &send_req[1]);
}
if(rank != world_size - 1){
/* Send next row information - non blocking*/
MPI_Isend(board + chunk_size * columns, columns, MPI_INT, rank + 1, 10, MPI_COMM_WORLD, &send_req[0]);
}
}
/* Step 4 : Perform Game of Life for rows 2 to last but one */
int start_location = (1 + (!flag0)) * columns;
int size = chunk_size - (!flag0) - (!flag1);
move_next_step(size, columns, board + start_location);
/* Step 5 : Check if the previous and next rows have been received now and perform for whichever has been received */
while(!flag0 || !flag1) {
if(!flag0){
MPI_Test(&request[0], &flag0, &recv_status[0]);
if(flag0){
move_next_step(1, columns, board + columns);
}
}
if(!flag1){
MPI_Test(&request[1], &flag1, &recv_status[1]);
if(flag1){
move_next_step(1, columns, board + chunk_size * columns);
}
}
}
/* Change all progress elements */
#pragma omp parallel for
for(int i = columns; i < (chunk_size + 1) * columns; i++)
if(board[i] > 1)
board[i] = 3 - board[i];
}
MPI_Barrier(MPI_COMM_WORLD);
/* Step 7: Receive the final board from all (using Gatherv) and print it. */
if(rank == 0) {
int chunk_sizes[world_size];
/* Initially set all chunks as same size */
for(int i = 0; i < world_size; i++)
chunk_sizes[i] = (rows/world_size) * columns;
/* Increment chunk_size by 1 for remaining processes */
if(rmdr != 0)
for(int i = 0; i < rmdr; i++)
chunk_sizes[i] += columns;
/* Use gatherv to receive chunks from all processes */
int displacements[world_size];
displacements[0] = 0;
for(int i = 1; i < world_size; i++)
displacements[i] = displacements[i-1] + chunk_sizes[i-1];
int *final_board = (int*) calloc(rows * columns, sizeof(int));
MPI_Gatherv(board + columns, chunk_size * columns, MPI_INT, final_board, chunk_sizes, displacements, MPI_INT, 0, MPI_COMM_WORLD);
if(interchanged){
for(int i = 0; i < columns; i++){
int offset = 0;
for(int j = 0; j < rows; j++){
printf("%d\n", final_board[i + offset]);
offset += columns;
}
}
} else{
print_board(final_board, rows, columns);
}
free(final_board);
}
else{
MPI_Gatherv(board + columns, chunk_size * columns, MPI_INT, NULL, NULL, NULL, MPI_INT, 0, MPI_COMM_WORLD);
}
free(board);
MPI_Finalize();
return 0;
}