forked from rodralez/NaveGo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradius.m
executable file
·64 lines (52 loc) · 1.94 KB
/
radius.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
function [RM,RN] = radius(lat, precision)
% radius: calculates meridian radius and normal radius.
%
% Copyright (C) 2014, Rodrigo Gonzalez, all rights reserved.
%
% This file is part of NaveGo, an open-source MATLAB toolbox for
% simulation of integrated navigation systems.
%
% NaveGo is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License (LGPL)
% version 3 as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this program. If not, see
% <http://www.gnu.org/licenses/>.
%
% References:
% Titterton, D.H. and Weston, J.L. (2004). Strapdown
% Inertial Navigation Technology (2nd Ed.). Institution
% of Engineering and Technology, USA. Eq. 2.6 and 2.7.
%
% R. Gonzalez, J. Giribet, and H. Patiño. An approach to
% benchmarking of loosely coupled low-cost navigation systems,
% Mathematical and Computer Modelling of Dynamical Systems, vol. 21,
% issue 3, pp. 272-287, 2015. Eq. 11.
%
% Version: 001
% Date: 2014/09/11
% Author: Rodrigo Gonzalez <rodralez@frm.utn.edu.ar>
% URL: https://github.com/rodralez/navego
if nargin < 2, precision = 'double'; end
if strcmp(precision, 'single')
a = single(6378137.0);
e = single(0.0818191908426);
e2 = e^2;
den = 1 - e2.*single(sin(lat)).^2;
RM = a * (1-e2) ./ (den).^(3/2);
RN = a ./ sqrt(den);
else
a = (6378137.0);
e = (0.0818191908426);
e2 = e^2;
den = 1 - e2.*(sin(lat)).^2;
RM = a * (1-e2) ./ (den).^(3/2);
RN = a ./ sqrt(den);
end
end