-
-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathvanilla_PG.py
146 lines (127 loc) · 4.9 KB
/
vanilla_PG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Reshape, Flatten, Conv2D
from keras.optimizers import Adam
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # 隐藏warning
'''
用于回合更新的离散控制
'''
class Skylark_VPG():
def __init__(self, env, alpha = 0.1, gamma = 0.6, epsilon=0.1, update_freq = 200):
self.obs_space = 80*80 # 视根据具体gym环境的state输出格式,具体分析
self.act_space = env.action_space.n
self.env = env
self.alpha = alpha # learning rate
self.gamma = gamma # discount rate
self.states = []
self.gradients = []
self.rewards = []
self.act_probs = []
self.total_step = 0
self.model = self._build_model()
self.model.summary()
def _build_model(self):
model = Sequential()
model.add(Reshape((1, 80, 80), input_shape=(self.obs_space,)))
model.add(Conv2D(32, (6, 6), activation="relu", strides=(3, 3),
padding="same", kernel_initializer="he_uniform"))
model.add(Flatten())
model.add(Dense(64, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(32, activation='relu', kernel_initializer='he_uniform'))
# softmax策略使用描述状态和行为的特征ϕ(s,a) 与参数\theta的线性组合来权衡一个行为发生的概率
# 输出为每个动作的概率
model.add(Dense(self.act_space, activation='softmax'))
opt = Adam(lr=self.alpha)
model.compile(loss='categorical_crossentropy', optimizer=opt)
return model
def choose_action(self, state):
state = state.reshape([1, self.obs_space])
act_prob = self.model.predict(state).flatten()
prob = act_prob / np.sum(act_prob)
self.act_probs.append(act_prob)
# 按概率选取动作
action = np.random.choice(self.act_space, 1, p=prob)[0]
return action, prob
def store_trajectory(self, s, a, r, prob):
y = np.zeros([self.act_space])
y[a] = 1 # 制作离散动作空间,执行了的置1
self.gradients.append(np.array(y).astype('float32')-prob)
self.states.append(s)
self.rewards.append(r)
def discount_rewards(self, rewards):
'''
从回合结束位置向前修正reward
'''
discounted_rewards = np.zeros_like(rewards)
running_add = 0
for t in reversed(range(0, rewards.size)):
if rewards[t] != 0:
running_add = 0
running_add = running_add * self.gamma + rewards[t]
discounted_rewards[t] = np.array(running_add)
return discounted_rewards
def learn(self):
gradients = np.vstack(self.gradients)
rewards = np.vstack(self.rewards)
rewards = self.discount_rewards(rewards)
# reward归一化
rewards = (rewards - np.mean(rewards)) / (np.std(rewards) + 1e-7)
gradients *= rewards
X = np.squeeze(np.vstack([self.states]))
Y = self.act_probs + self.alpha * np.squeeze(np.vstack([gradients]))
self.model.train_on_batch(X, Y)
self.states, self.act_probs, self.gradients, self.rewards = [], [], [], []
def train(self, num_episodes, batch_size = 128, num_steps = 100):
for i in range(num_episodes):
state = self.env.reset()
steps, sum_rew = 0, 0
done = False
while not done:
# self.env.render()
state = preprocess(state)
action, prob = self.choose_action(state)
# Interaction with Env
next_state, reward, done, info = self.env.step(action)
self.store_trajectory(state, action, reward, prob)
sum_rew += reward
state = next_state
steps += 1
self.total_step += 1
if done:
self.learn()
print('Episode: {} | Avg_reward: {} | Length: {}'.format(i, sum_rew/steps, steps))
print("Training finished.")
def load(self, path):
self.model.load_weights(path)
def save(self, path):
self.model.save_weights(path)
def preprocess(I):
'''
根据具体gym环境的state输出格式,具体分析
'''
I = I[35:195]
I = I[::2, ::2, 0]
I[I == 144] = 0
I[I == 109] = 0
I[I != 0] = 1
return I.astype(np.float).ravel()
if __name__ == "__main__":
use_ray = True
num_episodes = 1000
env = gym.make("Pong-v0").env
# env.render()
if use_ray:
import ray
from ray import tune
tune.run(
'PG',
config={
'env': "Pong-v0",
'num_workers': 1,
}
)
else:
pg_agent = Skylark_VPG(env)
pg_agent.train(num_episodes)