-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathsnli_rnn.py
201 lines (164 loc) · 6.98 KB
/
snli_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from __future__ import print_function
from functools import reduce
import json
import os
import re
import tarfile
import tempfile
import numpy as np
np.random.seed(1337) # for reproducibility
'''
300D Model - Train / Test (epochs)
=-=-=
Batch size = 512
Fixed GloVe
- 300D SumRNN + Translate + 3 MLP (1.2 million parameters) - 0.8315 / 0.8235 / 0.8249 (22 epochs)
- 300D GRU + Translate + 3 MLP (1.7 million parameters) - 0.8431 / 0.8303 / 0.8233 (17 epochs)
- 300D LSTM + Translate + 3 MLP (1.9 million parameters) - 0.8551 / 0.8286 / 0.8229 (23 epochs)
Following Liu et al. 2016, I don't update the GloVe embeddings during training.
Unlike Liu et al. 2016, I don't initialize out of vocabulary embeddings randomly and instead leave them zeroed.
The jokingly named SumRNN (summation of word embeddings) is 10-11x faster than the GRU or LSTM.
Original numbers for sum / LSTM from Bowman et al. '15 and Bowman et al. '16
=-=-=
100D Sum + GloVe - 0.793 / 0.753
100D LSTM + GloVe - 0.848 / 0.776
300D LSTM + GloVe - 0.839 / 0.806
'''
import keras
import keras.backend as K
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.layers import merge, recurrent, Dense, Input, Dropout, TimeDistributed
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization
from keras.layers.wrappers import Bidirectional
from keras.models import Model
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from keras.regularizers import l2
from keras.utils import np_utils
def extract_tokens_from_binary_parse(parse):
return parse.replace('(', ' ').replace(')', ' ').replace('-LRB-', '(').replace('-RRB-', ')').split()
def yield_examples(fn, skip_no_majority=True, limit=None):
for i, line in enumerate(open(fn)):
if limit and i > limit:
break
data = json.loads(line)
label = data['gold_label']
s1 = ' '.join(extract_tokens_from_binary_parse(data['sentence1_binary_parse']))
s2 = ' '.join(extract_tokens_from_binary_parse(data['sentence2_binary_parse']))
if skip_no_majority and label == '-':
continue
yield (label, s1, s2)
def get_data(fn, limit=None):
raw_data = list(yield_examples(fn=fn, limit=limit))
left = [s1 for _, s1, s2 in raw_data]
right = [s2 for _, s1, s2 in raw_data]
print(max(len(x.split()) for x in left))
print(max(len(x.split()) for x in right))
LABELS = {'contradiction': 0, 'neutral': 1, 'entailment': 2}
Y = np.array([LABELS[l] for l, s1, s2 in raw_data])
Y = np_utils.to_categorical(Y, len(LABELS))
return left, right, Y
training = get_data('snli_1.0_train.jsonl')
validation = get_data('snli_1.0_dev.jsonl')
test = get_data('snli_1.0_test.jsonl')
tokenizer = Tokenizer(lower=False, filters='')
tokenizer.fit_on_texts(training[0] + training[1])
# Lowest index from the tokenizer is 1 - we need to include 0 in our vocab count
VOCAB = len(tokenizer.word_counts) + 1
LABELS = {'contradiction': 0, 'neutral': 1, 'entailment': 2}
#RNN = recurrent.LSTM
#RNN = lambda *args, **kwargs: Bidirectional(recurrent.LSTM(*args, **kwargs))
#RNN = recurrent.GRU
#RNN = lambda *args, **kwargs: Bidirectional(recurrent.GRU(*args, **kwargs))
# Summation of word embeddings
RNN = None
LAYERS = 1
USE_GLOVE = True
TRAIN_EMBED = False
EMBED_HIDDEN_SIZE = 300
SENT_HIDDEN_SIZE = 300
BATCH_SIZE = 512
PATIENCE = 4 # 8
MAX_EPOCHS = 42
MAX_LEN = 42
DP = 0.2
L2 = 4e-6
ACTIVATION = 'relu'
OPTIMIZER = 'rmsprop'
print('RNN / Embed / Sent = {}, {}, {}'.format(RNN, EMBED_HIDDEN_SIZE, SENT_HIDDEN_SIZE))
print('GloVe / Trainable Word Embeddings = {}, {}'.format(USE_GLOVE, TRAIN_EMBED))
to_seq = lambda X: pad_sequences(tokenizer.texts_to_sequences(X), maxlen=MAX_LEN)
prepare_data = lambda data: (to_seq(data[0]), to_seq(data[1]), data[2])
training = prepare_data(training)
validation = prepare_data(validation)
test = prepare_data(test)
print('Build model...')
print('Vocab size =', VOCAB)
GLOVE_STORE = 'precomputed_glove.weights'
if USE_GLOVE:
if not os.path.exists(GLOVE_STORE + '.npy'):
print('Computing GloVe')
embeddings_index = {}
f = open('glove.840B.300d.txt')
for line in f:
values = line.split(' ')
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
# prepare embedding matrix
embedding_matrix = np.zeros((VOCAB, EMBED_HIDDEN_SIZE))
for word, i in tokenizer.word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
else:
print('Missing from GloVe: {}'.format(word))
np.save(GLOVE_STORE, embedding_matrix)
print('Loading GloVe')
embedding_matrix = np.load(GLOVE_STORE + '.npy')
print('Total number of null word embeddings:')
print(np.sum(np.sum(embedding_matrix, axis=1) == 0))
embed = Embedding(VOCAB, EMBED_HIDDEN_SIZE, weights=[embedding_matrix], input_length=MAX_LEN, trainable=TRAIN_EMBED)
else:
embed = Embedding(VOCAB, EMBED_HIDDEN_SIZE, input_length=MAX_LEN)
rnn_kwargs = dict(output_dim=SENT_HIDDEN_SIZE, dropout_W=DP, dropout_U=DP)
SumEmbeddings = keras.layers.core.Lambda(lambda x: K.sum(x, axis=1), output_shape=(SENT_HIDDEN_SIZE, ))
translate = TimeDistributed(Dense(SENT_HIDDEN_SIZE, activation=ACTIVATION))
premise = Input(shape=(MAX_LEN,), dtype='int32')
hypothesis = Input(shape=(MAX_LEN,), dtype='int32')
prem = embed(premise)
hypo = embed(hypothesis)
prem = translate(prem)
hypo = translate(hypo)
if RNN and LAYERS > 1:
for l in range(LAYERS - 1):
rnn = RNN(return_sequences=True, **rnn_kwargs)
prem = BatchNormalization()(rnn(prem))
hypo = BatchNormalization()(rnn(hypo))
rnn = SumEmbeddings if not RNN else RNN(return_sequences=False, **rnn_kwargs)
prem = rnn(prem)
hypo = rnn(hypo)
prem = BatchNormalization()(prem)
hypo = BatchNormalization()(hypo)
joint = merge([prem, hypo], mode='concat')
joint = Dropout(DP)(joint)
for i in range(3):
joint = Dense(2 * SENT_HIDDEN_SIZE, activation=ACTIVATION, W_regularizer=l2(L2) if L2 else None)(joint)
joint = Dropout(DP)(joint)
joint = BatchNormalization()(joint)
pred = Dense(len(LABELS), activation='softmax')(joint)
model = Model(input=[premise, hypothesis], output=pred)
model.compile(optimizer=OPTIMIZER, loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
print('Training')
_, tmpfn = tempfile.mkstemp()
# Save the best model during validation and bail out of training early if we're not improving
callbacks = [EarlyStopping(patience=PATIENCE), ModelCheckpoint(tmpfn, save_best_only=True, save_weights_only=True)]
model.fit([training[0], training[1]], training[2], batch_size=BATCH_SIZE, nb_epoch=MAX_EPOCHS, validation_data=([validation[0], validation[1]], validation[2]), callbacks=callbacks)
# Restore the best found model during validation
model.load_weights(tmpfn)
loss, acc = model.evaluate([test[0], test[1]], test[2], batch_size=BATCH_SIZE)
print('Test loss / test accuracy = {:.4f} / {:.4f}'.format(loss, acc))