Skip to content

2019-2020年目标跟踪资源全汇总(论文、模型代码、优秀实验室)极市团队整理

Notifications You must be signed in to change notification settings

Songpenglei123/Object-Tracking-Paper-Benchmark-Team

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

最新目标跟踪资源汇总(论文、模型代码、优秀实验室)|持续更新中

目录

1. 顶会论文

2.benchmark

3.实验室





参考链接:https://mp.weixin.qq.com/s/IaizDEfvRc0JrLrF--P2eA

多目标跟踪

目标跟踪与分割

单目标跟踪

长期跟踪

3D目标跟踪

细胞跟踪

目标跟踪鲁棒性研究

可见光与红外图像的目标跟踪

基于多谱勒雷达非视线区域的目标检测与跟踪

3D斑马鱼跟踪数据集

非刚体物体跟踪

  • 33.Learning to Optimize Non-Rigid Tracking
    作者 | Yang Li, Aljaz Bozic, Tianwei Zhang, Yanli Ji, Tatsuya Harada, Matthias Niessner
    单位 | 东京大学;电子科技大学;日本理化学研究所RIKEN;慕尼黑工业大学






参考:https://mp.weixin.qq.com/s/mfnO6brDMIYvTeDpI1pDMg

单目标跟踪

多目标跟踪

跟踪与分割

3D目标跟踪

跟踪数据集



  • DiMP: Goutam Bhat, Martin Danelljan, Luc Van Gool, Radu Timofte.
    "Learning Discriminative Model Prediction for Tracking." ICCV (2019 oral). [paper] [code]

  • GradNet: Peixia Li, Boyu Chen, Wanli Ouyang, Dong Wang, Xiaoyun Yang, Huchuan Lu.
    "GradNet: Gradient-Guided Network for Visual Object Tracking." ICCV (2019 oral). [paper] [code]

  • MLT: Janghoon Choi, Junseok Kwon, Kyoung Mu Lee.
    "Deep Meta Learning for Real-Time Target-Aware Visual Tracking." ICCV (2019). [paper]

  • SPLT: Bin Yan, Haojie Zhao, Dong Wang, Huchuan Lu, Xiaoyun Yang
    "'Skimming-Perusal' Tracking: A Framework for Real-Time and Robust Long-Term Tracking." ICCV (2019). [paper] [code]

  • ARCF: Ziyuan Huang, Changhong Fu, Yiming Li, Fuling Lin, Peng Lu.
    "Learning Aberrance Repressed Correlation Filters for Real-Time UAV Tracking." ICCV (2019). [paper] [code]

  • Lianghua Huang, Xin Zhao, Kaiqi Huang.
    "Bridging the Gap Between Detection and Tracking: A Unified Approach." ICCV (2019). [paper]

  • PAT: Rey Reza Wiyatno, Anqi Xu.
    "Physical Adversarial Textures That Fool Visual Object Tracking." ICCV (2019). [paper]

  • GFS-DCF: Tianyang Xu, Zhen-Hua Feng, Xiao-Jun Wu, Josef Kittler.
    "Joint Group Feature Selection and Discriminative Filter Learning for Robust Visual Object Tracking." ICCV (2019). [paper] [code]

  • CDTB: Alan Lukežič, Ugur Kart, Jani Käpylä, Ahmed Durmush, Joni-Kristian Kämäräinen, Jiří Matas, Matej Kristan.

    "CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark." ICCV (2019). [paper]



首先推荐两篇综述性论文:

  1. Deep Learning for Visual Tracking: A Comprehensive Survey

23页、207篇参考文献的多目标跟踪综述(2013-2019)。在OTB2013、OTB2015、VOT2018和LaSOT上对基于深度学习的最新目标跟踪方法进行了全面综述:介绍14种常用视觉跟踪数据集,超过50种历年的SOTA算法(如SiamRPN++)。

  1. DEEP LEARNING IN VIDEO MULTI-OBJECT TRACKING: A SURVEY

  • LaSOT: Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, Haibin Ling. "Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space." arXiv (2018). [paper] [project]

  • OxUvA long-term dataset+benchmark: Jack Valmadre, Luca Bertinetto, João F. Henriques, Ran Tao, Andrea Vedaldi, Arnold Smeulders, Philip Torr, Efstratios Gavves.
    "Long-term Tracking in the Wild: a Benchmark." ECCV (2018). [paper] [project]

  • TrackingNet: Matthias Müller, Adel Bibi, Silvio Giancola, Salman Al-Subaihi, Bernard Ghanem.
    "TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild." ECCV (2018). [project] [paper]

  • UAVDT: Dawei Du, Yuankai Qi, Hongyang Yu, Yifang Yang, Kaiwen Duan, GuoRong Li, Weigang Zhang, Weihai; Qingming Huang, Qi Tian.
    "The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking." ECCV (2018). [paper]



    (以下排名不分先后,可能有遗漏,欢迎补充)

    上海交通大学:林巍峣

    大连理工大学:卢湖川

    澳大利亚国立大学:Hongdong Li

    香港理工大学:Lei Zhang

    中国科学院自动化研究所:张天柱

    上海交通大学:CHAO MA

    加州大学默塞德分校:Ming-Hsuan Yang

    卢布尔雅那大学卢布尔雅那大学:Matej Kristan

    哈佛大学:João F. Henriques,Luca Bertinetto

    Torr Vision Group

    苏黎世联邦理工学院:Martin Danelljan

    商汤科技tracking组:武伟,王强,朱政

    腾讯 AI Lab 宋奕兵

    阿里巴巴:ET实验室

About

2019-2020年目标跟踪资源全汇总(论文、模型代码、优秀实验室)极市团队整理

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published