-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
279 lines (230 loc) · 10.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import torch.nn as nn
import math
class InputEmbeddings(nn.Module):
def __init__(self, d_model: int, vocab_size: int):
super().__init__()
self.d_model = d_model
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, d_model)
def forward(self, x):
return self.embedding(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model:int, seq_len:int, dropout:float):
super().__init__()
self.d_model = d_model
self.seq_len = seq_len
self.dropout = nn.Dropout(dropout)
# create a matrix of shape (seq_len, d_model)
pe = torch.zeros(seq_len, d_model)
# create a vector of shape (seq_len, 1)
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
# apply the sin to even positions
pe[:, 0::2] = torch.sin(position * div_term)
# apply the cos to odd positions
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0) # (1, seq_len, d_model)
# Register the positional encoding as a buffer
self.register_buffer('pe', pe)
def forward(self, x):
x += (self.pe[:, :x.shape[1], :]).requires_grad_(False)
return self.dropout(x)
class LayerNormalization(nn.Module):
def __init__(self, eps:float = 10**-6):
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(1)) # Multiplied
self.bias = nn.Parameter(torch.zeros(1)) # Added
def forward(self, x):
mean = x.mean(dim = -1, keepdim=True)
std = x.std(dim = -1, keepdim=True)
return self.alpha * (x - mean) / (std - self.eps) + self.bias
class FeedForwardBlock(nn.Module):
def __init__(self, d_model:int, d_ff:int, dropout:float):
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff) # W1 and B1
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model) # W2 and B2
def forward(self, x):
# (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model)
return self.linear_2(self.dropout(self.linear_1(x)))
class MultiHeadAttentionBlock(nn.Module):
def __init__(self, d_model:int, h:int, dropout:float):
super().__init__()
self.d_model = d_model
self.h = h
assert d_model % h == 0, f"d_model: {d_model}, is not multiple of h: {h}!"
self.d_k = self.d_model // self.h
self.w_q = nn.Linear(d_model, d_model) # Wq
self.w_k = nn.Linear(d_model, d_model) # Wk
self.w_v = nn.Linear(d_model, d_model) # Wv
self.w_o = nn.Linear(d_model, d_model) # Wo
self.dropout = nn.Dropout(dropout)
@staticmethod
def attention(query, key, value, mask, dropout: nn.Dropout):
d_k = query.shape[-1]
# (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len)
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
attention_scores.masked_fill(mask == 0, -1e9)
attention_scores = attention_scores.softmax(dim = -1) # (batch, h, seq_len, seq_len)
if dropout is not None:
attention_scores = dropout(attention_scores)
return (attention_scores @ value), attention_scores
def forward(self, q, k, v, mask):
query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
# (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k)
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2)
x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
# (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model)
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.d_k * self.h)
# (batch, seq_len, d_model) --> (batch, seq_len, d_model)
return self.w_o(x)
class ResidualConnection(nn.Module):
def __init__(self, dropout:float):
super().__init__()
self.dropout = nn.Dropout(dropout)
self.norm = LayerNormalization()
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
class EncoderBlock(nn.Module):
def __init__(
self, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float
):
super().__init__()
self.self_attention_block = self_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)])
def forward(self, x, src_mask):
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, src_mask))
x = self.residual_connections[1](x, self.feed_forward_block)
return x
class Encoder(nn.Module):
def __init__(self, layers: nn.ModuleList):
super().__init__()
self.layers = layers
self.norm = LayerNormalization()
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class DecoderBlock(nn.Module):
def __init__(
self, self_attention_block: MultiHeadAttentionBlock, cross_attention_block: MultiHeadAttentionBlock,
feed_forward_block: FeedForwardBlock, dropout: float
):
super().__init__()
self.self_attention_block = self_attention_block
self.cross_attention_block = cross_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(3)])
def forward(self, x, encoder_output, src_mask, tgt_mask):
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, tgt_mask))
x = self.residual_connections[1](x, lambda x: self.cross_attention_block(x, encoder_output, encoder_output, src_mask))
x = self.residual_connections[2](x, self.feed_forward_block)
return x
class Decoder(nn.Module):
def __init__(self, layers: nn.ModuleList):
super().__init__()
self.layers = layers
self.norm = LayerNormalization()
def forward(self, x, encoder_output, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, encoder_output, src_mask, tgt_mask)
return self.norm(x)
class ProjectionLayer(nn.Module):
def __init__(self, d_model: int, vocab_size: int):
super().__init__()
self.proj = nn.Linear(d_model, vocab_size)
def forward(self, x):
# (batch, seq_len, d_model) --> (batch, seq_len, vocab_size)
return torch.log_softmax(self.proj(x), dim=-1)
class Transformer(nn.Module):
def __init__(
self, encoder: Encoder, decoder: Decoder, src_embed: InputEmbeddings, tgt_embed: InputEmbeddings,
src_pos: PositionalEncoding, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer
):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.src_pos = src_pos
self.tgt_pos = tgt_pos
self.projection_layer = projection_layer
def encode(self, src, src_mask):
src = self.src_embed(src)
src = self.src_pos(src)
return self.encoder(src, src_mask)
def decode(self, encoder_output, src_mask, tgt, tgt_mask):
tgt = self.tgt_embed(tgt)
tgt = self.tgt_pos(tgt)
return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
def project(self, x):
return self.projection_layer(x)
def build_transformer(
src_vocab_size: int, tgt_vocab_size: int, src_seq_len: int, tgt_seq_len: int, d_model: int, N_encoder: int = 1, N_decoder: int = 1,
h: int = 4, dropout: float = 0.1, d_ff: int = 512
) -> Transformer:
# create the embedding layer
src_embed = InputEmbeddings(d_model, src_vocab_size)
tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)
# crete the positional layer
src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
# create the encoder layer
encoder = Encoder(
nn.ModuleList(
[
EncoderBlock(
MultiHeadAttentionBlock(
d_model, h, dropout
),
FeedForwardBlock(
d_model, d_ff, dropout
),
dropout
)
for _ in range(N_encoder)
]
)
)
# create the decoder layer
decoder = Decoder(
nn.ModuleList(
[
DecoderBlock(
# MultiHeadSelfAttention Block
MultiHeadAttentionBlock(
d_model, h, dropout
),
# MultiHeadCrossAttention Block
MultiHeadAttentionBlock(
d_model, h, dropout
),
# FeedForward Block
FeedForwardBlock(
d_model, d_ff, dropout
),
dropout
)
for _ in range(N_decoder)
]
)
)
# Create the projection layer
projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
# Create the transformer
transformer = Transformer(
encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer
)
# Initialize the parameters
for p in transformer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return transformer