-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataset.py
115 lines (84 loc) · 4.71 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import skimage.transform
import torch
class LSP_Dataset(torch.utils.data.Dataset):
def __init__(self, path="./lsp_dataset", is_lsp_extended_dataset=False): #/content/drive/My Drive
self.path = path
self.is_lspet = is_lsp_extended_dataset
imgs_list = sorted(os.listdir(os.path.join(path, "images")))
# Load joints data from the mat file
self.joint_data = scipy.io.loadmat(os.path.join(path, "joints.mat"))["joints"]
if self.is_lspet:
self.joint_data = self.joint_data.transpose((1, 0, 2))
self.dataset_size = self.joint_data.shape[2]
assert len(imgs_list) == self.dataset_size
self.max_h, self.max_w = 196, 196
# Load and store images (float) into a list
self.array_of_images = np.empty([self.dataset_size, self.max_h, self.max_w, 3], dtype=float)
self.array_of_labels = np.empty([self.dataset_size, 3, 14], dtype=float) #N x (X,Y) x (14 joints)
# DeepPose: 4.1: Experimental Details -> "For LSP we use the full image as initial bounding box since the humans are relatively tightly cropped by design."
# Read Section 3.4 of "Stacked Hourglass Networks for Human Pose Estimation" and Section 4.2 of "Convolutional Pose Machines" for more augmentations, normalizations and handling of single person pose detection in a multi-person scene.
# both padding and resizing are commonly used approaches to obtain fixed size images required by the CNN, we go with padding here to preserve human body aspect ratio.
for file_idx, file_name in enumerate(imgs_list):
img, labels = self.scale_and_pad( plt.imread(os.path.join(path, "images", file_name)), self.joint_data[:2,:,file_idx])
self.array_of_images[file_idx] = img
self.array_of_labels[file_idx, :2, :] = labels
self.array_of_labels[file_idx, 2, :] = self.joint_data[2, :, file_idx]
print(f"Built Dataset: found {self.__len__()} image-target pairs")
def scale_and_pad(self, img, labels):
scale_factor = self.max_h/max(*img.shape)
# https://scikit-image.org/docs/dev/api/skimage.transform.html#rescale -> the input image is converted according to the conventions of img_as_float
scaled_img = skimage.transform.rescale(img, scale=scale_factor, multichannel=True) #anti_aliasing=True
img_h, img_w, _ = scaled_img.shape
padded_scaled_img = np.zeros([self.max_h, self.max_w, 3])
start_h, start_w = int((self.max_h - img_h)/2), int((self.max_w - img_w)/2)
padded_scaled_img[start_h:start_h + img_h, start_w:start_w + img_w, :] = scaled_img
padded_scaled_labels = (labels*scale_factor + np.array([[start_w], [start_h]]))/self.max_h - 0.5
return padded_scaled_img, padded_scaled_labels
def __getitem__(self,idx):
return self.array_of_images[idx], self.array_of_labels[idx]
def __len__(self):
return self.array_of_images.shape[0]
def print_sample(dataset, sample_idx):
if dataset.is_lspet:
file_name = f"im{sample_idx + 1:05d}.jpg"
else:
file_name = f"im{sample_idx + 1:04d}.jpg"
original_img = plt.imread(os.path.join(dataset.path, "images", file_name))
visualized_img = plt.imread(os.path.join(dataset.path, "visualized", file_name))
normalized_img = dataset.array_of_images[sample_idx]
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, gridspec_kw={'width_ratios': [1, 1, 2]}) # figsize=(14,14)
ax1.title.set_text('Original')
ax1.imshow(original_img)
for i in range(14):
if dataset.joint_data[2, i, sample_idx] == 0.0: c = 'b'
else: c = 'r'
ax1.plot(dataset.joint_data[0, i, sample_idx], dataset.joint_data[1, i, sample_idx],'.', color=c)
ax2.title.set_text('Visualized')
ax2.imshow(visualized_img)
ax3.title.set_text('Normalized')
ax3.imshow(normalized_img)
for i in range(14):
if dataset.__getitem__(sample_idx)[1][2, i] == 0.0: c = 'b'
else: c = 'r'
ax3.plot(dataset.max_h*(0.5 + dataset.__getitem__(sample_idx)[1][0, i]),
dataset.max_h*(0.5 + dataset.__getitem__(sample_idx)[1][1, i]),
'.',
color=c)
fig.tight_layout()
plt.show()
if __name__ == "__main__":
dataset = LSP_Dataset()
print_sample(dataset, 3)
# self.max_h, self.max_w, self.min_h, self.min_w = 0, 0, float('inf'), float('inf')
# for file_name in imgs_list:
# img = plt.imread(os.path.join(path, "images", file_name))
# if img.shape[0] > self.max_h: self.max_h = img.shape[0]
# if img.shape[0] < self.min_h: self.min_h = img.shape[0]
# if img.shape[1] > self.max_w: self.max_w = img.shape[1]
# if img.shape[1] < self.min_w: self.min_w = img.shape[1]
#https://pytorch.org/docs/stable/torchvision/transforms.html
#https://discuss.pytorch.org/t/data-augmentation-in-pytorch/7925