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Abstract 

We describe the spatial and temporal indexing schemes of the SpatioTemporal 
Adaptive-Resolution Encoding, STARE, its logical extensions, the status of its ap-
plication programming interface, and examples of its applications. STARE indices 
are integers embedded with spatiotemporal attributes key to efficient spatiotem-
poral analysis. As a more computationally efficient alternative to conventional 
floating-point spatiotemporal references, STARE indices apply uniformly to all 
spatiotemporal data regardless of their geometric layouts. Through this unified ref-
erence, STARE harmonizes diverse data in their native states to enable integrative 
analysis without requiring homogenization of the data by interpolating them to a 
common grid first. In addition, the STARE scheme is hierarchical, which lends well 
to organizing STARE-indexed data for spatiotemporal co-alignment. Since spatio-
temporal data analyses often require spatiotemporal coincidence, i.e., analyzing 
diverse data for the same time and space (location), spatiotemporally co-aligned 
data organization better guarantees scalability for distributed parallel processing, 
thus addressing the Big-Data challenges of volume, variety, and velocity. Moreover, 
since STARE indices carry not only references to spatiotemporal coordinates but 
also references to flexible, hence adaptive, spatiotemporal neighborhoods (inter-
vals), it naturally generalizes to using collections of these indices for specifying “co-
vers” of spatiotemporal extents at different resolutions. Any entity with time-de-
pendent change of spatial extent can thus be described or specified with a collec-
tion of STARE indices. Phenomenon episodes, such as tropical cyclones, atmos-
pheric rivers, etc., are such entities with dynamic, temporally varying spatial ex-
tents. When these STARE-index collections are appropriately catalogued in data-
base management systems, queries to the database can easily extract the various 
spatiotemporal relations between the entities to enrich our understanding of their 
interactions. 
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Motivation 
With the ever-increasing data volume and escalating demand for timely decision-making, par-

allel processing is the only means for data analysis to yield actionable information in time, in in-
creasingly many cases. “Distributed parallel processing” is especially suited for analyses needing 
to concurrently process large volumes of data, with a computer-memory demand that far exceeds 
what is available on a single computer.  

With distributed parallel processing, a group of computers, called “nodes”, connected in a 
high-bandwidth network, are aggregated together into a “cluster”, offering multiple times (pro-
portional to the number nodes) the memory available on a single computer. The volumes of data 
to be analyzed are then partitioned and distributed to nodes in the cluster, each of which processes 
only a small portion of the whole and, hopefully, finishes the entire analysis collectively in a frac-
tion of the time taken by a single computer. Clearly, the ideal scenario is one in which the pieces 
of data, called chunks, distributed to any cluster nodes are independent of (aka, uncoupled from) 
the other chunks distributed to all the other nodes. Each node can thus process its chunk(s) in 
isolation and results are only communicated to the head-node and gathered at the end when every 
node is done. 

The real situation, however, is rarely ideal, especially with typical integrative analysis scenar-
ios involving diverse varieties of geo-spatiotemporal data. The illustrative example in Figure 1 
demonstrates this problem, namely that diverse datasets are essentially never aligned for effi-
cient, scalable use of distributed, parallel computing and storage resources. The black-outlined 
rectangle is our region of interest (ROI), representing, for example, a grid cell of a simulation 
model. The ROI overlaps with, say, concurrent brightness temperature (TB) observations from 
two orbiting spacecrafts. The two orbital swath segments, A and B, composed of elliptical instan-
taneous fields of view, IFOVs, of different sizes/resolutions, which are typically cast in array data 
structures in HDF files. The array indices, i.e., i and j for A and p and q for B, provide a convenient 
means (e.g., fixed strides) to partition the observations in A and B into chunks, as indicated by 
dotted lines in the figure. These chunks are distributed to a 3-node cluster using a randomized 
sequence, with the red numbers denoting the node to which a chunk is distributed.  

However, if we wish to integratively analyze and compare, in parallel, the TB values in the ROI 
from the two swath segments, the original chunks must first be repartitioned and redistributed in 
computer memory at compute time. For example, if we choose the partitions of B as a template 
for distribution, as shown in the rightmost element of Figure 1, we notice that the chunk place-
ments of data in A on cluster nodes are not aligned with those in B! We now must move the mis-
aligned chunk data in A to the same nodes as those in B to restore alignment before processing 
commences. Therefore, this misalignment of “data placements” between datasets caused by data 
variety induces considerable data movements between cluster nodes, detrimentally impacts 

 
Figure 1 . Illustration of data placement misalignment when using array indices. 
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computation efficiency and scalability [1], and thus drives up computing cost. As we can see, it is 
impossible to align data placements with incompatible resolutions and/or layout geometries by 
using array indices for partitioning. This problem is rooted in the disconnect between array indi-
ces and corresponding geo-spatiotemporal locations. 

Currently, the prevailing approach to address this problem is to interpolate the diverse data 
to a common grid. However, this approach has at least two shortcomings. First, this computation-
ally costly interpolation generates more data. Second, different applications may use different grid 
systems as the “common grid” and often have different interpolation requirements, such as 
whether flux conservation should be enforced and to what degree, leading to more interpolated 
data being generated. Moreover, the process tends to obfuscate provenance, introduces error, and 
endangers reproducibility. 

STARE Indexing 
The SpatioTemporal Adaptive-Resolution Encoding, STARE, is a geo-spatiotemporal encod-

ing developed to support the combination of diverse data for integrative analysis [11-14]. STARE 
encodes spatiotemporal neighborhoods with two (2) 64-bit integers, in a left-justified manner, 
that contain location information. This mapping of space-time volumes into integers provides an 
excellent way to uniformly index and coordinate data with different or even irregular geo-spatio-
temporal layouts in a computationally efficient manner. 

GEOSPATIAL INDEXING – STARE HTM 
The spatial component of STARE, a modified implementation of Hierarchical Triangular 

Mesh (HTM) [15-16], encodes solid angle and is essentially a serial index into a recursive quadtree 
tessellation of the 8 facets of a root octahedron projected onto the sphere (see the left side of Fig-
ure 2). In other words, the STARE HTM encodes, in a 64-bit integer, a hierarchy of 8 branches (at 
the root level, or level 0) of quadtrees (see the right side of Figure 2). Each subsequent branching 
into 4 is called a quadfurcation. A spherical triangle of the tessellation, in any quadfurcation level 
(QL), is called a trixel. As such, a trixel in the i-th QL (i.e., QLi) is called a “QLi trixel”; for example, 

a “QL2 trixel” refers to a spherical triangle of the tessellation at the 2nd quadfurcation level (i.e., 
the trixels of the 3rd tessellation in the left side of Figure 2). 

In the following, we explain the STARE encoding of geolocation first and then the encoding 
of neighborhood, which by rough analogy may be thought of as a “postal address” and a “zip code,” 
respectively. The current implementation of STARE limits the quadfurcation to the 27th level and 
uses the QL27 indices (akin to addresses) to index geolocation, as an alternative to floating-point 

 
Figure 2. STARE spatial indexing scheme, based on the quadfurcation from the 8 facets of the root 
octahedron. (Note: our implementation has tilted the octahedron, to minimize the possibility for 
ambiguity in the indices todata elements located exactly at, for example, the equator, the poles, or 
meridians that coincide with edges of the trixels.)  
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longitude-latitude (lon-lat) pairs. At QL27, the edges of the trixels have lengths of ~7-10 cm, lead-
ing to a rather uniform ~7-10 cm geolocation uncertainty over the globe, which is generally better 
than the commonly used single-precision floating-point lon-lat pairs, especially near the equator. 
As it can be seen, 8 (=23) branches of 27-level quadtrees (=22×27=254) take 57 (3+54) bits to encode 
and there are 7 bits left in the 64-bit word, of which we use the least significant 5 bits (akin to 
zipcode) to indicate neighborhood. 

Figure 3 illustrates the scheme with QLs 0-2. The bit pattern of a STARE HTM 64-bit-integer 
index is left justified at bit #61, the 3rd most significant bit position. Three bits, i.e., #59-61, contain 
the binary number that indexes one of the 8 root octahedron facets. The next 2 bits, i.e., #57-58, 
contain the binary number that indexes one of the four trixels of the 1st quadfurcation, and so on 
until QL27, which we use to index the center of a data element, e.g., either a point observation, an 
instantaneous field of view (IFOV) from a satellite-borne instrument, or a model simulation grid 
cell. If the areal coverage extent of the data element is ~16 km2 (=4-km×4-km), equivalent to a 
nominal resolution of 4-km that is smaller than the ~5-km edge length of a QL11 trixel but greater 
than the ~2.5-km of a QL12 trixel, we say that the data element has a trixel neighborhood of QL11 

and set the neighborhood bits, i.e., #0-4, 
to the binary equivalent of 11. 

A geospatial data element nearly al-
ways has an areal extent associated with it, 
like a zip code in our postal analogy men-
tioned above. It is a key piece of infor-
mation required for most geospatial anal-
yses but missing from the geolocation-only 
reference of the lon-lat pair. STARE, how-
ever, embeds that information in its indi-
ces and leverages it for harmonizing geo-
spatiotemporal data with diverse resolu-
tions and layouts. 

Note that, to assert whether a data ele-
ment 𝑥 overlaps with or contains another 
data element 𝑦, in terms of mathematical 
set logic, we examine first the respective 
neighborhood bits (zip codes) of their 
STARE HTM indices and choose the 

 
Figure 3. Bit-pattern design for STARE spatial HTM 64-bit integer indices. 
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Figure 4. STARE HTM indexes locations and 
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smaller number. For example, if the neighborhood bits of 𝑥 have a value of 11 and 𝑦 a value of 13, 
we choose 11. We then examine values of both indices in the range of bits corresponding to QL11 
to QL0, i.e., bits #37-61 (which can be performed efficiently with bit masking). If they are the 
same, then 𝑥 contains 𝑦, because it means 𝑦 is an offspring of 𝑥 in the STARE HTM tree hierarchy 
and an ancestor trixel (lower numbered QL) contains an offspring trixel (higher numbered QL).  

Figure 4 illustrates these ideas graphically in detail. It shows a QL23 trixel outlined in peach 
color, containing a mesh of sub-trixels (offspring on the quadtree) from QL24 to QL27. A large 
IFOV is shaded in green. The centroid of this green IFOV falls in the red-outlined QL27 trixel 
whose STARE HTM index value is thus used for indexing the IFOV’s location. Since the area ex-
tent of the green IFOV is larger than a QL24 trixel and smaller than a QL23 one, and the peach-
color-outlined QL23 trixel is the ancestor on the quadtree of its QL27 location, the peach-colored 
trixel is used to represent the IFOV’s neighborhood. 

A group of 20 (=5x4) smaller IFOVs in Figure 4, from a different instrument, is shaded in blue, 
whose area extents are larger than a QL26 trixel but smaller than a QL25 one. Thus, the coarser 
QL25 trixels are used to represent their neighborhoods. The centroid of one of the blue IFOVs 
also falls into the red-outlined QL27 trixel. This blue IFOV therefore has the same STARE location 
index value as the larger green IFOV but it has a QL25 trixel (outlined in darker blue) neighbor-
hood. A subset of these 20 blue IFOVs are outlined with a darker shade of blue to denote that their 
QL27 locations (and corresponding QL25 neighborhoods) are contained by the peach-outlined 
QL23 neighborhood of the green IFOV. 

It is thus apparent that, with such a scheme, we can carry out efficient set operations, e.g., 
intersect and union, using integer STARE indices to yield fairly accurate approximate results. This 
type of set logic operations is generalized in the STARE application programming interface 
(STARE API, described below) to collections of STARE trixels with integer-range operations. 

TEMPORAL INDEXING – STARE HCP 
The temporal component of STARE, i.e., the Hierarchical Ca-

lendrical Partitioning (HCP), has a similar structure, except that 
different levels of the tree, corresponding to different calendrical 
units, i.e. hours, days, months, have different numbers of branches. 
The HCP is based on a hierarchical partitioning of International 
Atomic Time (TAI) and API functions are provided for both UTM 
and TAI, with low-level support provided by the Essential Routines 
for Fundamental Astronomy (ERFA) derived from the Interna-

tional Astronomical 
Union’s Standards of 
Fundamental Astron-
omy (IAU/SOFA). 
HCP is designed to 
support several scal-
ings, i.e., different 

calendars/resolu-
tions, see Table 1, for 
an example. STARE 
HCP indices also in-
clude asymmetric 
neighborhood infor-
mation. For example, 
in addition to the time 
of an observation, 
rough measures of the 

Table 1. Example 
configuration of STARE 
HCP temporal encoding. 

Meaning No. Bits 

Calendar Type 2 

Reverse neigh-
borhood 6 

Forward neigh-
borhood 6 

millisecond 10 

Second 6 

Minute 6 

Hour 5 

Day 3 

Week 2 

Month 4 

Year 13 

Before/After 1 

Total 64 

 

 
Figure 5. STARE spatiotemporal cells. Each 
prism corresponds to two 64-bit integers. 
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time since a prior observation and the time to a future observation are encoded in the same 64-
bit index value. With this encoding, temporal set logic can be performed in a manner similar to 
STARE HTM indices. 

Figure 5 shows visual representations of the fundamental spatiotemporal volume element, 
with each “prism” being associated with two 64-bit integer, i.e., HTM+HCP, indices. The green 
spatiotemporal prismatic volume element in Figure 5 shows the asymmetric temporal neighbor-
hoods, typical for observations from instruments on low Earth orbit (LEO) satellites, because their 
revisit periods are not uniform, depending not only on latitude but also cross-track position in the 
swath. Complex spatiotemporal regions of interest can be represented as sets of STARE HTM 
and/or HCP indices, leading to the concept of a STARE cover described below. 

STARE Covers 
As alluded to above, a STARE cover is an area or a volume, represented by a set of STARE 

HTM and/or HCP indices, “covering” the spatial or spatiotemporal extent of interest, for example, 
the temporal evolution of a storm’s area. That is, if we use STARE spatial (HTM) and temporal 
(HCP) index tuple (𝑠! , 𝑡!) to denote the spatiotemporal prismatic volume elements in the covering 
set, then 𝑉 ⊂ (𝐶" = ⋃ (𝑠! , 𝑡!)! ), where 𝑉  is the spatiotemporal volume of interest and 𝐶"  is the 
cover of 𝑉. The geo-spatiotemporal semantics of the integer indices allows set logic operations to 
be performed through integer operations and tree-based algorithms, usually obviating floating-
point geometric calculations for STARE-indexed data. 

SPATIAL COVERS 
A time slice (or a snapshot) of a spatiotemporal vol-

ume, e.g., a storm area at a given time, or a region of in-
terest (ROI) that stays essentially constant with time, 
e.g., state of Oklahoma, needs only a spatial cover, i.e., a 
collection of STARE HTM indices. Figure 6 shows an ex-
ample spatial cover for Australia and Tasmania con-
structed using STAREPandas, a part of the STARE API 
and a pendant to GeoPandas.  

The variety of trixel sizes in the cover correspond to 
the variety of embedded neighborhood or resolution in-
formation (QL) of the STARE HTM indices. The user 
specifies the maximum QL (i.e., finest neighborhood, 
thus highest resolution) trixels to use in a cover. The trix-
els of highest QL usually concentrate around the border 
of the region of interest. The higher the QL trixels used, the more accurately the cover approxi-
mates the ROI, but with increasing number of total trixel indices required for the cover, which 
increases storage/memory footprint and computation resource demands.  

As a set of 64-bit integers corresponding to areas, no special treatment is required to handle 
the Tasmanian strait, those trixels are simply not included in the cover. In other words, the col-
lection of STARE indices in a STARE cover is a very general way of specifying region(s) or vol-
ume(s) of interest. STARE HTM indices treat topological varieties, such as fragmentation, holes 
(e.g., lakes) in the region, or bubbles in the volume, consistently without partiality. 

SPATIOTEMPORAL COVERS AND MOVING OBJECTS 
Many investigations in Earth Science have a phenomenon focus, for example the investiga-

tions of tropical cyclones, atmospheric rivers, El Niño, etc. To capture the temporal evolution of a 
phenomenon episode, e.g., Hurricane Irma, a three-dimensional (3D) spatiotemporal STARE 
cover, i.e., 2D in space plus 1D in time, is needed. As alluded to in Figure 5, a STARE spatiotem-
poral volume cover is a collection of (triangular) prismatic volumes. 

 
Figure 6. STARE spatial cover for 
Australia, including Tasmania. 
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Figure 7 shows two hypothetical phe-
nomenon episodes, one moving mostly 
northward while the other mostly east-
ward. Plot A in Figure 7 shows the spatial 
cover of each time slice in varying colors, 
whereas plot B shows the projection of 
those time slices on the 2D lon-lat plane. 
Taking the union of the time slices of 
STARE spatial covers yields spatiotem-
poral covers for these two episodes. When 
moving objects, such as phenomenon epi-
sodes, are expressed with STARE 
HTM+HCP indices tied to space-time lo-
cations and neighborhoods, they become 
amenable to numerical operations and 
manipulation, such as subsetting and dif-
ferencing, and support database ingest, cataloging, and queries, as well as scalable, parallel com-
putation. 

In Figure 8, the moving object is an instrumented aircraft, sent from Lanai Island (point A) to 
observe, by remote sensing means, some (hypothetical) phenomenon episode over the ocean in 
the west-south-west direction. After reaching the sky near the center of the phenomenon (point 
B), the aircraft returns to Hawaii Island (point C). Since the islands are stationary, their spatial 
covers do not change with time. Therefore, they look like vertical columns in the leftmost plot. 
(We could have shown the temporal evolution of the episode along the vertical time axis as well, 
but it would have obscured the flight path.) The projection of the aircraft’s time-dependent loca-
tion and the neighborhood of its measurements is depicted in the center plot. The rightmost plot 
shows the value of the variable measured by the aircraft as a function of time (and location). 

STARE Data Harmonization 
STARE harmonizes geo-spatiotemporal data varieties for fusional analysis in their native res-

olutions and layouts. This data-variety harmonization facilitates data placement alignment first 
in storage for efficient search-and-filter and second in memory for performant and scalable dis-
tributed parallel processing. It thus supports our STARE application programming interface (API) 
to enable timely, custom, and on-demand fusional analyses, minimizing the need for costly whole-
sale homogenization through interpolation/re-gridding that often obfuscates the processing prov-
enance and generates massive custom intermediate data of limited reusability to other users and 
communities (see Figure 9). 

 
Figure 7. Two moving objects represented with 
STARE spatiotemporal covers in 3-D (left) and 
planform (right) renderings. 

  

 

 

Figure 8. A notional scenario where an aircraft follows a trajectory (ABC) over some phenomenon 
(rainbow disk, left) making observations indicated along the trajectory (middle) and as a time series 
(right). STARE covers of the Hawaiian Islands are shown as columns. 
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STARE-PODS – VARIETY-HARMONIZED ORGANIZATION 
Our STARE Parallel Optimized Data Store, STARE-

PODS, leverages the STARE hierarchy to facilitate perfor-
mant distributed parallelization even further, by fully ex-
ploiting STARE hierarchical indexing for data packaging 
and organization.  

Take, for example, a swath segment and partition it 
into chunks at a prescribed quadfurcation level, QLq, as 
shown in Figure 10. It naturally suggests a hierarchical or-
ganization as illustrated in Figure 11. On traditional 
filesystems, one can implement a directory structure to 
mimic the hierarchy. Each directory corresponding to a 
QLq trixel is termed a STARE pod or, simply, a pod. 
Chunks, from all datasets, belonging to the same pod re-
side in the corresponding directory.  

For Web Object Stores favored by Cloud vendors where directory structure is absent, one 
could prepend the hexadecimal number of the QLq trixel index to the name of the chunk. For 

example, if we have decided to 
partition at QL4, i.e., 𝑞 = 4 
(requiring 11 bits and 3 digits 
in hexadecimal), and the origi-
nal swath segment has “XYZ” 
as its file name, we could pre-
pend the names of the  4 
chunks in Figure 11 with hexa-
decimal number correspond-
ing to bits #51-62 1  (recalling 
Figure 3) of the QL4 trixel 
HTM index, resulting in, e.g., 
“0x6FC_XYZ”, “0x6FD_XYZ”, 
“0x6FE_XYZ”, and 
“0x6FF_XYZ”, etc. One may 
just as easily use these file-
name prefixes as a directory 
structure for search and filter 
to align data placements. Or, 

 
 
1 There are 12 bits in bits #51-62, i.e., one bit more than the required 11 bits for indexing QL4 trixels. This 
is because, for consistency’s sake, we keep bits #59-62 (4 bits) as a group. This is especially advantageous 
when expressing the indices as hexadecimal numbers since each hexadecimal digit represents 4 bits. 

 
Figure 11. Leveraging STARE HTM hierarchy for data storage and 
memory organization to facilitate scalable spatiotemporal data 
alignment. 
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hierarchy for data storage and 
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Figure 9. STARE Data harmonization avoids the creation and proliferation of excess intermediate data. 
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perhaps even better, one could employ a database management system (DBMS) to catalog and 
organized the chunks according to the STARE hierarchical indices as well. 

Figure 12 illustrates the advantage of re-
packaging and organizing according to 
STARE hierarchy using two notional orbital 
swaths. The thick, solid black line is the 
equator. The solid dark gray lines of medium 
thickness outline the QL0 trixels (i.e., the 
projection of the root octahedron’s edges), 
whereas the thin light gray lines outline QL4 
trixels. Observations from two satellites 
trace the two swaths: swath S for a sun-syn-
chronous orbit (blue outline) and swath T 
for an inclined orbit targeting the tropics 
(brown outline), with the satellites’ nadir 
tracks indicated by thicker solid blue and 
brown lines, respectively. These observa-
tions are broken into swath segments as in-
dicated by the cross-track dashed lines. Cur-
rently, data elements (IFOVs) within each 
segment are typically cast into a raster array 
and packaged into a file. 

To implement STARE-PODS, we would 
first generate STARE indices for all data ele-
ments in the files. If we decide to use QL4 

trixels for partitioning the data, we then repackage data elements within each QL4 trixel (having 
non-empty overlap with the swaths) into a file as a STARE chunk (see Figure 11). Partially filled 
chunks, like the QL4 trixel just south of Iceland with dotted red outline (as opposed to the filled 
one north of Britain with solid red outline) in swath S, are permitted. 

The QL4 trixels shaded in red form the QL4-trixel cover for one swath S segment, whereas the 
ones shaded in green form another for a neighbor segment (to the north). Since we wish to pre-
serve the original swath-segment appearance, there will be two sets of partially filled chunks for 
the QL4 trixels (those shaded by both red and green) at the shared boundary of these two seg-
ments, one set for each segment with the data elements of the other segment excluded.  

Note the chunks in the cyan shaded QL4 trixels in Figure 12 covering the overlap of swaths S 
and T. If we use a directory structure to implement the STARE hierarchy, they will be under the 
same respective QL4 directories. If we use QL4 trixel index for chunk-name prefix, corresponding 
chunks will have the same prefixes. Finding the overlaps between swath S and T (or any other 
datasets) becomes trivial and scalable! Since our STARE API can convert arbitrary (spherical) 
polygons into STARE covers at any given QL, finding overlaps between an ROI and any STARE 
chunks becomes trivial as well. With STARE-PODS, geospatial analytics will become more re-
source efficient, more performant, and more scalable. 

We have prototyped a STARE-PODS with STARE-based data partitioning and organization 
on a traditional file system. This prototype, named XCAL, uses three 1-month of cross-calibrated 
microwave radiometer/imager datasets produced by the NASA Precipitation Processing System 
[17] for NASA Precipitation Measurement Missions, which include (cross-)calibrated brightness 
temperatures from 18 satellite-borne microwave radiometer/imager instruments in NASA’s 
Global Precipitation Measurement (GPM) mission era, such as AMSR2, ATMS, GMI, MHS, 
SSMIS, etc. [18] This set of data products exhibits not only data varieties across the products of 
different instruments but, due to different IFOV resolutions for different microwave frequencies, 

 
Figure 12. Illustrative example of two intersecting 
orbital swaths of different orbit characteristics 
overlaid on a mesh of STARE HTM QL4 trixels. 

 
 

Swath S

Swath T
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also within the same product of the same instrument. For example, the SSMIS instruments 
(onboard different satellites of the Defense Meteorological Satellite Program) have 4 distinctive 
swaths (S1-S4) for their 8 microwave frequencies and 11 channels (including different polariza-
tions for some frequencies) [18]. Such an acute diversity of data varieties constitutes a serious test 
for our STARE-PODS concept, which has turned out to be very positive. Our developer and tester 

have commented, “I cannot imagine the amount of effort 
that would have been required to conduct integrative 
analysis on these data without the STARE-based parti-
tioning and organization.” 

As a more concrete example from XCAL, Figure 13 
shows part of a data granule from SSMIS, a microwave 
radiometer on a polar orbiting spacecraft, in which the 
IFOVs in the granule have been partitioned into chunks 
according to their STARE spatiotemporal location. Rep-
resented as triangles, the pods in this case are at QL4, 
which have a corresponding scale size of ~640 km. As il-
lustrated in Figure 11 and Figure 12, STARE-PODS, our 
data store architecture, organizes chunked data from dif-
ferent data sources, co-aligning them to minimize data 
movement for storage and use on scalable resources, such 
as HPC and Cloud. A metadata database, or even an ap-
propriately designed file system directory (folder) hierar-
chy can rapidly find co-aligned chunks from different da-
tasets. 

STARE API 
A variety of functions for working with STARE indices and collections of them are provided 

for C++ and Python applications, as shown in Table 2. The goal of the API is to shield users from 
requiring intimate knowledge of 
bit-level manipulations of STARE 
indices, so their scientific produc-
tivity can be enhanced by working 
at a higher level of abstraction. 
Functions are provided for translat-
ing between latitude-longitude 
(lon-lat) and for indexing and or-
ganizing data.  

With PySTARE, Python users 
can pass around Numpy arrays of 
STARE indices using the API to per-
form rudimentary construction 
tasks from geolocation data, fol-
lowed by (conditional) subsetting, 
and other spatiotemporal set logic 
on any diverse data that has been 
indexed and harmonized using 
STARE. Building on PySTARE, 
STAREPandas integrates STARE-
based geo-spatiotemporal opera-
tions with the Pandas dataframe by 
extending GeoPandas.  

 
Figure 13. SSMIS IFOVs chunked 
according to STARE pods, with the 
redscale indicating the number of 
observations in a chunk. 

Table 2. STARE Application Programming Interfaces 

C++ Library API 

Spatial 
Indexing 
HTM 

• Translations to/from latitude/longitude 
• Integer intervals & comparisons 
• Convex hulls and cover sets 
• Trixel geometric information 
• Rotated root polygon 
• Nearest neighbor and resolution 
• Skip-list-based region-of-interest objects 

Temporal 
Indexing 
HCP 

• TAI, UTC based on ERFA (SOFA) 
• Julian day support 
• Temporal interval and resolution support 

 
PySTARE & STAREPandas 

“Pythonic” interface to STARE functions via SWIG 
Numpy arrays 

Matplotlib/Cartopy Support 
GeoPandas integration with STARE dataframes 
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Using the STARE API allows researchers to construct higher-level geo-spatiotemporal objects 
such as regions of interest or dataset covers and, in turn, to distribute and co-align multiple da-
tasets according to STARE, leading to harmonized, scalable data ready for further work, including 
physics-based detailed analyses, e.g., at the IFOV level, that are impossible with the current state-
of-the-art interpolation-based processing, which irreparably washes away physical detail. 

STARE API APPLICATION 
STARE provides a uniform way to refer to spa-

tiotemporal regions that harmonizes data on com-
putational resources. STARE indices act as coordi-
nates, which bring diverse data together because of 
STARE’s combination of real-world and cyber-
space data organization (Figure 14). 

 shows the harmonization and fusion of two da-
tasets with quite different patterns of observation. 
Imagery from GOES and swath data from MODIS 
were indexed (i.e. geo-locations plus neighbor-
hoods encoded with STARE), partitioned, and 
combined. The data may be indexed in a variety of 
ways. The STAREmaster command line app makes 
sidecar files for corresponding legacy files, ena-
bling users to access and process data in legacy 
files leveraging STARE. PySTARE and STARE-
Pandas provide functions for constructing STARE indices from lon-lat pairs. Because STARE is a 
geo-spatiotemporal indexing scheme and does not re-grid, no information is lost during indexing 
or partitioning. Despite the distortion due to projection, the QL5 trixels of the GOES cover in 
Figure 15 do not vary greatly in size and there is no difference in the way poles and lower latitudes 
are handled. Once the data are indexed, partitioning and sub-setting according to geo-location 
become straightforward set logic based on integer operations. Specifying a region of interest (ROI), 
like the circle in Figure 15, allows one to select off or bin STARE-indexed data with as fine a gran-
ularity as needed (down to ~7-10cm across). Using ROI covers, which are just arrays of 64-bit 
integers, to select data in PySTARE is generally no more complicated than indexing using 
numpy.where(). STAREPandas operates on a higher abstraction level still. 

 
Figure 14. The QL0 (root) and QL1 
polyhedrons (right) underlying the HTM 
neighborhoods in Mollweide projection 
(right). Note the “tilt” of the root octahedron. 

 

 
Figure 15. GOES (red/brown) and MODIS (blue) granules harmonized and integrated using STARE, 
visualized in an equirectangular projection. Covers for the GOES and MODIS granules are shown with 
fixed and variable QL for GOES and MODIS, respectively, on the left. Data may be partitioned for parallel 
analysis or storage by STARE trixel neighborhoods. A circular ROI is shown as an example of sub-setting 
these two diverse data sets. 
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Figure 16 shows 
GOES and MODIS data 
being harmonized using 
PySTARE. A circular re-
gion of interest (ROI, 
same as that in Figure 15) 
has been specified and the 
API has been used to con-
struct covers using QL10 
and QL11 for GOES and 
MODIS, respectively. A 
simple comparison of bit-
patterns allows data from 
the two data sets to be 
overlaid, or harmonized, 
even though they have 
very different geograph-
ical layouts. (Note that 
the MODIS cover is 
smaller than the GOES 
cover because a finer QL, 
i.e., 11 versus 10, is used 
for MODIS cover.)  

Both the PySTARE 
and STAREPandas APIs 
provide the means to subset data based on covers. Any spatiotemporal region can be represented 
by a cover, such as the geographic circle in Figure 16 or even a data-driven ROI, such as a precip-
itation event, Figure 17. In Figure 17, NMQ2 radar observations of a precipitation event have been 
indexed with STARE. Given that NMQ is a gridded data product, it suffices to calculate the STARE 
indices once as the grid locations do not change. As an example of data-driven conditional sub-

setting, a precipi-
tation-rate 

threshold has 
been set on the 
NMQ data, which 
is used next to 
subset near-con-
current TRMM 
swath, with the 
result displayed 
as a Boolean 
mask seen in Fig-
ure 17 (left and 
center).  

STARE-
harmonization 

 
 
2 National Mosaic and Multi-sensor QPE (quantitative precipitation estimates) produced by NOAA Na-
tional Severe Storm Laboratory (NSSL). It has been superseded by the Multi-Radar Multi-sensor System 
(MRMS) data product since ~2015. 

 
Figure 16. Covers of a circular ROI for GOES and MODIS data, showing 
the harmonization of data with diverse geometric layout. IFOVs are 
black (blue) for GOES (MODIS) and the trixels are filled with a color 
based on aggregating the data values within a trixel. The red HTM 
trixels have a length scale of approximately 10km. Note the GOES data 
have been selected or “joined” with the higher resolution MODIS data. 
The lower row shows the detail of the circle indicated in the upper row. 

ROI+GOES ROI+MODIS ROI+GOES+MODIS

 
Figure 17. STARE-harmonized NMQ radar (gridded) and TRMM (swath) data 
used for data-driven conditional sub-setting. STARE-locations of NMQ data 
above a given threshold are used to select TRMM observations (right). 

NMQ NMQ+TRMM TRMM(NMQ)
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makes it easy to determine which data of the TRMM swath 
are in the same neighborhoods of the NMQ ROI (Figure 17, 
right). This subsetting process needs not stop here. The 
cover of the TRMM(NMQ) can be used to search, select, 
and subset data from other, diverse data sets, without re-
gard to their geo-spatiotemporal layout. Just as a feature 
detected in the gridded NMQ data was used to select the 
swath TRMM data, the conditionally sub-setted 
TRMM(NMQ) cover can be used to load data from MODIS, 
VIIRS, aircraft, ground stations, and so on. 

On a more macroscopic scale, Figure 18 demonstrates 
some of the cover and indexing functions of STARE. A cover 
of Australia and Tasmania is shown constructed using 
STAREPandas calling on underlying GeoPandas functions 
and data. Figure 18 also shows two covers constructed from 

two MODIS granule files of swath data. These data have 
been indexed using the STAREmaster command line appli-
cation, which constructs sidecar files with translation lookup 
tables for mapping between STARE index values and their 
native array location in legacy files (i.e., as they are currently 
stored in files in data centers or on Cloud). The STARE side-
car files allow STARE-aware applications to use pre-com-
puted STARE indexing to harmonize data, readily co-align-
ing different kinds of data without interpolation and dra-
matically reduced data wrangling. Covers and lookup tables 
can also be constructed via Python. STAREPandas is readily 
extensible by end users to work with diverse Earth Science 
data in legacy file formats or on Cloud. 

Unlike conventional raster array indices that are devoid 
of spatiotemporal semantics, STARE indices do double duty 
as spatiotemporal coordinates and “array-like” indices. Ra-
ther, key-value stores using STARE indices are almost as 
easy to use as array indices, even when the data have differ-
ent spatiotemporal layouts.  

Figure 19 shows the result of using STAREPandas to de-
termine the intersection of the MODIS granules and the 
ROI. We can compare the trimmed covers, i.e. the intersec-
tions of the granule covers with the ROI, with the translation 
tables in the STAREmaster sidecar files to determine the 
data elements to load from the legacy data files, e.g., Figure 
20. The data shown in Figure 20 are actually MODIS Level-
2 IFOVs rendered as dots (not to scale for visibility) and have 
not been interpolated to any grid, highlighting the fact that 
STARE has been used as a harmonizing mechanism (i.e., in-
dexing and organizing) as opposed to homogenizing by in-
terpolation to a predetermined grid. As stated elsewhere, the 
Tasmanian Strait requires no special handling. The STARE 
indices (64-bit integers) associated with the strait are simply 
not in or among the indices of the ROI cover. 

The simplicity of using integer indices with spatiotem-
poral semantics for searching, intersecting, and sub-setting 

 
Figure 18. Shows covers associated 
with a GeoPandas-derived ROI 
(Australia and Tasmania) and two 
MODIS granules. 

 

 
Figure 19. The MODIS granules of 
Figure 18 are trimmed to the ROI. 
STARE, PySTARE, and 
STAREPandas provide the 
capability to determine 
intersections of covers.  

 

 
Figure 20. Using the trimmed 
covers to sub-set the MODIS data. 
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is apparent when STARE-based catalogues are constructed. Figure 21 shows a set of MODIS gran-
ule covers that we catalogued to support further analyses, as a proof-of-concept prototype.  

STAREPandas and STARELite (a 
SQLite extension) provide high-level 
support for the storage organization of 
geographical regions as STARE-covers 
and provide querying functions for de-
termining when and where query-ROIs 
intersect with data in the database. The 
STARE covers can be generated on the fly 
on ingest or be precomputed, e.g., by us-
ing STAREmaster. For the case illus-
trated in Figure 21, the data were stored 
in Cloud, STAREmaster was used to con-
struct sidecar files, which were then read 
into both STARELite and STAREPandas 
databases. In fact, STAREPandas pro-
vides a turnkey folder2catalogue() func-
tion for the construction of STARE in-
dexes for harmonization from folders on 
local filesystems or in Cloud (e.g., AWS 
S3).  

The results of querying a catalog with 
an ROI are shown in Figure 21 (left) 
where we see the trimmed granule covers 
of the catalogued MODIS data overlaid 
on the ROI as in Figure 19. Using a data-
base or dataframe provides a high-level 
means for organizing, querying, and ac-
cessing other geo-spatiotemporal func-
tions, but it is not difficult to use the 
lower-level PySTARE or C++ APIs to 
achieve the same effects. Performing 
geo-spatiotemporal logic with STARE is 
in many ways much simpler than work-
ing with geometrical entities such as 
points, lines, polygons, etc. represented 
as vectors of floating-point numbers. The 
source datafiles in Figure 21 were stored 
in Cloud, catalogued, and then processed 
in parallel. Figure 21 (right) shows the 
data collected from the catalogued gran-
ules matching the ROI in the query. 

A harmonization example is shown 
in Figure 22, where a subset of MODIS 
and MERRA-2 data matching the Aus-
tralian ROI have been harmonized into 
QL6 pods (green trixels) in the vicinity of 
Brisbane, and each pod has been ren-
dered separately. In this simple example, 
the pods are stored in a Python 

  
Figure 21. A catalogue of MODIS granule STARE covers 
can be loaded into a STARE-aware database or 
STAREPandas (top). A STARE cover for an ROI 
(Australia) can be used to query the catalogue to 
determine which granules overlap the ROI (left), which 
can then be used to load non-interpolated IFOVs that 
intersect the query region (right).  

 
Figure 22. MERRA-2 data (gridded; green dots) and 
MODIS IFOVs (shades of blue) are harmonized on the 
Australian ROI in the vicinity of Brisbane, Australia. 
The green trixels are from a cover of the MERRA-2 
data. Note higher resolution neighborhoods (finder 
trixels) of the MODIS data. The coastline visualization 
uses higher resolution data than that used to construct 
the Australian ROI cover. Simple Python dictionaries 
were used for this harmonization, where STARE spatial 
locations were used as dictionary keys. 
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dictionary using the pods’ STARE spatial location index value (a 64-bit integer) as a key. There 
has been no information loss in this harmonization as no interpolation or other processing of the 
data values has occurred. The data have merely been indexed and organized and become now 
analysis-ready.  

The partitioning according to STARE greatly simplifies further processing using parallel or 
elastic computing resources. Researchers wishing to interpolate or re-grid the data are free to do 
so when necessitated by the analysis and can take advantage of the partitioning for scaling up 
volume and variety. Since the data are still in their original form, STARE enables the work of 
researchers wishing to apply physics-based analyses involving the observational details and con-
text at scale, e.g., globally. 

As a simple example of a parallel, distrib-
uted analysis performed on harmonized data, 
Figure 23 shows a basic statistical analysis of 
water vapor observations contained in the 
catalogued MODIS data (one day’s worth) in 
Figure 21. In this case, we have chosen QL3 
pods as the ROIs to make the results more 
visible. As the analysis is identical for each 
pod, the analysis of the whole is pleasingly 
parallel.  The work associated with searching 
for and loading the data and then calculating 
summary statistics for each pod was executed 
in parallel using the Daskhub parallel envi-
ronment in NASA’s Science Managed Cloud 
Environment (SMCE). 

For each of the 512 QL3 pods, the catalog 
was searched for overlapping MODIS Level-
2 data. STARE’s catalogue searching is effi-
cient as it compares ROI-cover to the gran-
ule-cover, which are just sets of 64-bit inte-
gers. As an aside, searching for MERRA-2 
data is much simpler as there is only one 
MERRA-2 grid, whereas each MODIS gran-
ule features arrays (for longitudes and lati-
tudes) of irregular geolocations. For 
MERRA-2, once the native array indices are 
found for a pod, these indices are good for all 
MERRA-2 data products. STARE enables the 
harmonization and analysis of diversely ar-
rayed data. 

Once the data were harmonized on the QL3 pods, calculating statistics for the data in each 
pod is straightforward and the results are displayed in Figure 23. Again, we note that the harmo-
nized data in the QL3 pods have not been changed, merely re-organized. If we had wished to con-
tinue our analysis, or share this data with colleagues, we could have saved the harmonized QL3 
pods to Cloud forming a prototype Parallel Optimized Data Store (PODS) of harmonized, analysis-
ready MODIS Level 2 swath data. As more diverse data are repackaged in pods and stored in 
Cloud or HPC environments as PODS, we will be able to drastically increase our ability to perform 
integrative analysis with STARE-PODS providing the means to combine dramatically different 
kinds of data at scale.  

 

 
Figure 23. Prototype aggregation of MODIS Level 2 
(un-gridded) swath water vapor data associated 
with granules visualized in Figure 21. Data in 
legacy file formats were stored in Cloud and 
processed using the Dask parallel platform. The 
processing was partitioned using STARE with the 
loading and calculation performed in parallel. The 
white patches at the poles are artifacts of the 
Matplotlib projection and configuration. 
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A final example of how STARE and STARE-PODS can enable new capabilities is the Optimal 
Data Layout (ODL) Map Interface for the interactive analysis of diverse data sets (Figure 24). In 
this work, data from 3 Big Earth Science data sets for the winter of 2009-2010 were stored in a 
SciDB distributed parallel array database management system on a 16-node cluster computer. 
Harmonizing the data from two different grid layouts and the complex swath data from NASA 
Tropical Rainfall Measuring Mission (TRMM) spacecraft was almost trivial as the STARE spatial 
indices fit precisely the sparse array indexing functions of the array database management system.  
With the STARE-enabled ODL, multiple researchers could simultaneously study (independently 
or collaboratively) blizzard phenomenon events through responsive, interactive visualizations of 
the harmonized diverse data including integrated data animations and statistics. 

Summary 
Today’s complex technical systems are interconnected and global, generating vast amounts of 

geo-spatiotemporal data. Most analyses or products formed from these data have been built on 
data homogenized (interpolated) to common grids, meaning that vast domains of opportunity 
exist for extracting value from harmonized data. Harmonized data, with its best-possible resolu-
tion, physical content, and untrammeled relational context, is critical for the next generation of 
modeling, forecasting, simulation, and analysis, where interrelationships and causal linkages are 
key. On the other hand, data homogenization removes important context from observations, fun-
damentally limiting its usefulness, even as it brings diverse data onto common reference grids. 

In this note, we have seen NMQ, MODIS, MERRA-2, SSMIS, GOES, and TRMM data—grid-
ded, swath, imagery, ground-based, space-based—all treated within the same unified, integrative, 
analytic framework, respecting low-level data integrity, and including an example in Cloud using 
elastic, scalable processing.  STARE’s unique capability to scale in both data diversity and volume 
for a relatively modest investment by stakeholders and end-users is critical for fully realizing the 
value contained in our geo-data stores. 

 

Figure 24. The STARE-enabled web-based 
graphical user interface for the Optimal 
Data Layout (ODL) for Scalable Geophysical 
Analysis in a Data-Intensive Environment 
enabling interactive exploration of diverse 
data (MERRA-2, NMQ, and TRMM) stored 
on a 16-node cluster computer, with 
responsive big data animated visualization 
[1]. 
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As the spatiotemporal scales of our observations and simulations become finer and the global 
linkages of Earth systems become more apparent, the need for scaling in both data diversity and 
volume is clear. STARE provides a unifying platform for bringing diverse data, data products, and 
pipelines together in a computationally efficient manner. STARE, though it is perhaps an unfa-
miliar approach to indexing or organizing Earth Science data, is easy to use and readily extensible 
to incorporate higher abstractions such as moving objects, STARE dramatically allays the burden, 
cost, and complexity of data wrangling. STARE-PODS enables the integration of the vast diversity 
of geo-data products and methods on the distributed parallel computing systems required for 
scaling to problems of global scope. STARE’s simplifying principle of imbuing integers with hier-
archical spatiotemporal semantics for indexing eliminates the ever-growing “all-to-all” explosion 
of data interoperability issues and costs. STARE-based data coordination is vital for making full 
use the diverse, voluminous geo-data in a host of scientific, commercial, and other contexts. 
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