-
Notifications
You must be signed in to change notification settings - Fork 1
/
CITATION.cff
110 lines (108 loc) · 5.51 KB
/
CITATION.cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright (c) 2017 The University of Manchester
#
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
cff-version: 1.2.0
message: If you use this software, please cite it as below.
preferred-citation:
type: article
doi: 10.3389/fnins.2018.00816
issn: 1662-453X
url: https://www.frontiersin.org/articles/10.3389/fnins.2018.00816
title: "sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker"
journal: Frontiers in Neuroscience
volume: 12
year: 2018
month: 11
abstract: This work presents sPyNNaker 4.0.0, the latest version of the software package for simulating PyNN-defined spiking neural networks (SNNs) on the SpiNNaker neuromorphic platform. Operations underpinning realtime SNN execution are presented, including an event-based operating system facilitating efficient time-driven neuron state updates and pipelined event-driven spike processing. Preprocessing, realtime execution, and neuron/synapse model implementations are discussed, all in the context of a simple example SNN. Simulation results are demonstrated, together with performance profiling providing insights into how software interacts with the underlying hardware to achieve realtime execution. System performance is shown to be within a factor of 2 of the original design target of 10,000 synaptic events per millisecond, however SNN topology is shown to influence performance considerably. A cost model is therefore developed characterizing the effect of network connectivity and SNN partitioning. This model enables users to estimate SNN simulation performance, allows the SpiNNaker team to make predictions on the impact of performance improvements, and helps demonstrate the continued potential of the SpiNNaker neuromorphic hardware.
authors:
- given-names: Oliver
family-names: Rhodes
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0003-1728-2828
website: https://research.manchester.ac.uk/en/persons/oliver.rhodes
- given-names: Petrut
family-names: Bogdan
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0001-5535-7865
- given-names: Christian Y.
family-names: Brenninkmeijer
affiliation: University Of Manchester
email: christian.brenninkmeijer@manchester.ac.uk
orcid: https://orcid.org/0000-0002-2937-7819
website: https://www.researchgate.net/profile/Christian_Brenninkmeijer
- given-names: Simon
family-names: Davidson
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0001-5385-442X
website: https://research.manchester.ac.uk/en/persons/simon.davidson
- given-names: Donal
family-names: Fellows
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0002-9091-5938
website: https://www.researchgate.net/profile/Donal-Fellows
- given-names: Andrew
family-names: Gait
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0001-9349-1096
website: https://personalpages.manchester.ac.uk/staff/andrew.gait/
- given-names: David R.
family-names: Lester
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0002-7267-291X
- given-names: Mantas
family-names: Mikaitis
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0001-8706-1436
website: https://research.manchester.ac.uk/en/persons/mantas.mikaitis
- given-names: Luis A.
family-names: Plana
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0002-6113-3929
website: https://research.manchester.ac.uk/en/persons/luis.plana
- given-names: Andrew G. D.
family-names: Rowley
affiliation: University Of Manchester
email: Andrew.Rowley@manchester.ac.uk
orcid: https://orcid.org/0000-0002-2646-8520
website: https://www.researchgate.net/profile/Andrew_Rowley2
- given-names: Alan B.
family-names: Stokes
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0002-6110-1484
- given-names: Steve B.
family-names: Furber
affiliation: University Of Manchester
orcid: https://orcid.org/0000-0002-6524-3367
website: https://research.manchester.ac.uk/en/persons/steve.furber
title: SpiNNaker test environments SNN Learning and Memory on
authors:
- name: SpiNNaker Software Team
alias: For a list of contributors see https://github.com/SpiNNakerManchester/SpiNNGym/graphs/contributors or for a combined list see https://spinnakermanchester.github.io/latest/LicenseAgreement.html#contributors
address: University of Manchester, Oxford Road
city: Manchester
country: GB
email: spinnakerusers@googlegroups.com
post-code: M13 9PL
website: https://apt.cs.manchester.ac.uk/projects/SpiNNaker/
url: https://spinnakermanchester.github.io/
contact:
- address: University of Manchester, Oxford Road
city: Manchester
country: GB
email: spinnakerusers@googlegroups.com
name: SpiNNaker Software Team
post-code: M13 9PL
license: GPL-3.0
repository: https://github.com/SpiNNakerManchester/SpiNNGym