-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_clip_exp.py
363 lines (326 loc) · 13.8 KB
/
run_clip_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""
Run EQA in Habitat-Sim with CLIP for exploration.
"""
import os
os.environ["TRANSFORMERS_VERBOSITY"] = "error" # disable warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["HABITAT_SIM_LOG"] = (
"quiet" # https://aihabitat.org/docs/habitat-sim/logging.html
)
os.environ["MAGNUM_LOG"] = "quiet"
import numpy as np
np.set_printoptions(precision=3)
import csv
import pickle
import logging
import math
import quaternion
import matplotlib.pyplot as plt
from PIL import Image
from tqdm import tqdm
import habitat_sim
from habitat_sim.utils.common import quat_to_coeffs, quat_from_angle_axis
from src.habitat import (
make_simple_cfg,
pos_normal_to_habitat,
pos_habitat_to_normal,
pose_habitat_to_normal,
pose_normal_to_tsdf,
)
from src.geom import get_cam_intr, get_scene_bnds
from src.vlm import VLM
from src.tsdf import TSDFPlanner
from CLIP.clip import ClipWrapper, saliency_configs
def main(cfg):
camera_tilt = cfg.camera_tilt_deg * np.pi / 180
img_height = cfg.img_height
img_width = cfg.img_width
cam_intr = get_cam_intr(cfg.hfov, img_height, img_width)
# Load dataset
with open(cfg.question_data_path) as f:
questions_data = [
{k: v for k, v in row.items()}
for row in csv.DictReader(f, skipinitialspace=True)
]
with open(cfg.init_pose_data_path) as f:
init_pose_data = {}
for row in csv.DictReader(f, skipinitialspace=True):
init_pose_data[row["scene_floor"]] = {
"init_pts": [
float(row["init_x"]),
float(row["init_y"]),
float(row["init_z"]),
],
"init_angle": float(row["init_angle"]),
}
logging.info(f"Loaded {len(questions_data)} questions.")
# Load VLM
vlm = VLM(cfg.vlm)
# Run all questions
cnt_data = 0
results_all = []
for question_ind in tqdm(range(len(questions_data))):
# Extract question
question_data = questions_data[question_ind]
scene = question_data["scene"]
floor = question_data["floor"]
scene_floor = scene + "_" + floor
question = question_data["question"]
choices = question_data["choices"]
choices = [c.split("'")[1] for c in question_data["choices"].split("',")]
answer = question_data["answer"]
init_pts = init_pose_data[scene_floor]["init_pts"]
init_angle = init_pose_data[scene_floor]["init_angle"]
logging.info(f"\n\n========\nInd: {question_ind} Scene: {scene} Floor: {floor}")
logging.info(f"Question: {question} Choices: {choices}, Answer: {answer}")
# Re-format the question to follow LLaMA style
vlm_question = question
vlm_pred_candidates = ["A", "B", "C", "D"]
for token, choice in zip(vlm_pred_candidates, choices):
vlm_question += "\n" + token + "." + " " + choice
# Set data dir for this question - set initial data to be saved
episode_data_dir = os.path.join(cfg.output_dir, str(question_ind))
os.makedirs(episode_data_dir, exist_ok=True)
result = {"question_ind": question_ind}
# Set up scene in Habitat
try:
simulator.close()
except:
pass
scene_mesh_dir = os.path.join(
cfg.scene_data_path, scene, scene[6:] + ".basis" + ".glb"
)
navmesh_file = os.path.join(
cfg.scene_data_path, scene, scene[6:] + ".basis" + ".navmesh"
)
sim_settings = {
"scene": scene_mesh_dir,
"default_agent": 0,
"sensor_height": cfg.camera_height,
"width": img_width,
"height": img_height,
"hfov": cfg.hfov,
}
sim_cfg = make_simple_cfg(sim_settings)
simulator = habitat_sim.Simulator(sim_cfg)
pathfinder = simulator.pathfinder
pathfinder.seed(cfg.seed)
pathfinder.load_nav_mesh(navmesh_file)
agent = simulator.initialize_agent(sim_settings["default_agent"])
agent_state = habitat_sim.AgentState()
pts = init_pts
angle = init_angle
# Floor - use pts height as floor height
rotation = quat_to_coeffs(
quat_from_angle_axis(angle, np.array([0, 1, 0]))
* quat_from_angle_axis(camera_tilt, np.array([1, 0, 0]))
).tolist()
pts_normal = pos_habitat_to_normal(pts)
floor_height = pts_normal[-1]
tsdf_bnds, scene_size = get_scene_bnds(pathfinder, floor_height)
num_step = int(math.sqrt(scene_size) * cfg.max_step_room_size_ratio)
logging.info(
f"Scene size: {scene_size} Floor height: {floor_height} Steps: {num_step}"
)
# Initialize TSDF
tsdf_planner = TSDFPlanner(
vol_bnds=tsdf_bnds,
voxel_size=cfg.tsdf_grid_size,
floor_height_offset=0,
pts_init=pos_habitat_to_normal(pts),
init_clearance=cfg.init_clearance * 2,
)
# Run steps
pts_pixs = np.empty((0, 2)) # for plotting path on the image
for cnt_step in range(num_step):
logging.info(f"\n== step: {cnt_step}")
# Save step info and set current pose
step_name = f"step_{cnt_step}"
logging.info(f"Current pts: {pts}")
agent_state.position = pts
agent_state.rotation = rotation
agent.set_state(agent_state)
pts_normal = pos_habitat_to_normal(pts)
result[step_name] = {"pts": pts, "angle": angle}
# Update camera info
sensor = agent.get_state().sensor_states["depth_sensor"]
quaternion_0 = sensor.rotation
translation_0 = sensor.position
cam_pose = np.eye(4)
cam_pose[:3, :3] = quaternion.as_rotation_matrix(quaternion_0)
cam_pose[:3, 3] = translation_0
cam_pose_normal = pose_habitat_to_normal(cam_pose)
cam_pose_tsdf = pose_normal_to_tsdf(cam_pose_normal)
# Get observation at current pose - skip black image, meaning robot is outside the house
obs = simulator.get_sensor_observations()
rgb = obs["color_sensor"]
depth = obs["depth_sensor"]
if cfg.save_obs:
plt.imsave(
os.path.join(episode_data_dir, "{}.png".format(cnt_step)), rgb
)
num_black_pixels = np.sum(
np.sum(rgb, axis=-1) == 0
) # sum over channel first
if num_black_pixels < cfg.black_pixel_ratio * img_width * img_height:
# TSDF fusion
tsdf_planner.integrate(
color_im=rgb,
depth_im=depth,
cam_intr=cam_intr,
cam_pose=cam_pose_tsdf,
obs_weight=1.0,
margin_h=int(cfg.margin_h_ratio * img_height),
margin_w=int(cfg.margin_w_ratio * img_width),
)
# Get VLM prediction
rgb_im = Image.fromarray(rgb, mode="RGBA").convert("RGB")
prompt_question = (
vlm_question
+ "\nAnswer with the option's letter from the given choices directly."
)
# logging.info(f"Prompt Pred: {prompt_text}")
smx_vlm_pred = vlm.get_loss(
rgb_im, prompt_question, vlm_pred_candidates
)
logging.info(f"Pred - Prob: {smx_vlm_pred}")
# Get VLM relevancy
prompt_rel = f"\nConsider the question: '{question}'. Are you confident about answering the question with the current view? Answer with Yes or No."
# logging.info(f"Prompt Rel: {prompt_text}")
smx_vlm_rel = vlm.get_loss(rgb_im, prompt_rel, ["Yes", "No"])
logging.info(f"Rel - Prob: {smx_vlm_rel}")
# Get CLIP relevancy
clip_grads = ClipWrapper.get_clip_saliency(
img=rgb, # use original array
text_labels=[question],
prompts=["{}"],
**saliency_configs["ours"](img_height),
)[0]
clip_grad = clip_grads.cpu().numpy()[0] # only one label
vmin, vmax = 0.005, 0.020 # normalization
cmap = plt.get_cmap("jet")
clip_grad = np.clip(
(clip_grad - vmin) / (vmax - vmin), a_min=0.0, a_max=1.0
)
# Save CLIP image
fig = plt.figure()
plt.imshow(rgb)
colored_clip_grad_rgba = cmap(clip_grad)
colored_clip_grad_rgba[..., -1] = (
1 - clip_grad
) * 0.7 # for visualizing
plt.imshow(colored_clip_grad_rgba)
sm = plt.cm.ScalarMappable(
cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)
)
plt.colorbar(sm, ax=plt.gca())
plt.savefig(os.path.join(episode_data_dir, f"{cnt_step}_clip_grad.png"))
plt.close()
# Integrate semantics
tsdf_planner.integrate(
color_im=rgb,
depth_im=depth,
cam_intr=cam_intr,
cam_pose=cam_pose_tsdf,
sem_im=clip_grad,
obs_weight=1.0,
)
logging.info(f"Semantic: {np.max(clip_grad)}")
# Save data
result[step_name]["smx_vlm_pred"] = smx_vlm_pred
result[step_name]["smx_vlm_rel"] = smx_vlm_rel
else:
logging.info("Skipping black image!")
result[step_name]["smx_vlm_pred"] = np.ones((4)) / 4
result[step_name]["smx_vlm_rel"] = np.array([0.01, 0.99])
# Determine next point
if cnt_step < num_step:
pts_normal, angle, pts_pix, fig = tsdf_planner.find_next_pose(
pts=pts_normal,
angle=angle,
flag_no_val_weight=cnt_step < cfg.min_random_init_steps,
**cfg.planner,
)
pts_pixs = np.vstack((pts_pixs, pts_pix))
pts_normal = np.append(pts_normal, floor_height)
pts = pos_normal_to_habitat(pts_normal)
# Add path to ax5, with colormap to indicate order
ax5 = fig.axes[4]
ax5.plot(pts_pixs[:, 1], pts_pixs[:, 0], linewidth=5, color="black")
ax5.scatter(pts_pixs[0, 1], pts_pixs[0, 0], c="white", s=50)
fig.tight_layout()
plt.savefig(
os.path.join(episode_data_dir, "{}_map.png".format(cnt_step + 1))
)
plt.close()
rotation = quat_to_coeffs(
quat_from_angle_axis(angle, np.array([0, 1, 0]))
* quat_from_angle_axis(camera_tilt, np.array([1, 0, 0]))
).tolist()
# Check if success using weighted prediction
smx_vlm_all = np.empty((0, 4))
relevancy_all = []
candidates = ["A", "B", "C", "D"]
for step in range(num_step):
smx_vlm_pred = result[f"step_{step}"]["smx_vlm_pred"]
smx_vlm_rel = result[f"step_{step}"]["smx_vlm_rel"]
relevancy_all.append(smx_vlm_rel[0])
smx_vlm_all = np.vstack((smx_vlm_all, smx_vlm_rel[0] * smx_vlm_pred))
# use the max of the weighted predictions
smx_vlm_max = np.max(smx_vlm_all, axis=0)
pred_token = candidates[np.argmax(smx_vlm_max)]
success_weighted = pred_token == answer
# use the max of the relevancy
max_relevancy = np.argmax(relevancy_all)
relevancy_ord = np.flip(np.argsort(relevancy_all))
pred_token = candidates[np.argmax(smx_vlm_all[max_relevancy])]
success_max = pred_token == answer
# Summary
logging.info(f"\n== Trial Summary")
logging.info(f"Scene: {scene}, Floor: {floor}")
logging.info(f"Question:\n{vlm_question}\nAnswer: {answer}")
logging.info(f"Success (weighted): {success_weighted}")
logging.info(f"Success (max): {success_max}")
logging.info(
f"Top 3 steps with highest relevancy with value: {relevancy_ord[:3]} {[relevancy_all[i] for i in relevancy_ord[:3]]}"
)
for rel_ind in range(3):
logging.info(f"Prediction: {smx_vlm_all[relevancy_ord[rel_ind]]}")
# Save data
results_all.append(result)
cnt_data += 1
if cnt_data % cfg.save_freq == 0:
with open(
os.path.join(cfg.output_dir, f"results_{cnt_data}.pkl"), "wb"
) as f:
pickle.dump(results_all, f)
# Save all data again
with open(os.path.join(cfg.output_dir, "results.pkl"), "wb") as f:
pickle.dump(results_all, f)
logging.info(f"\n== All Summary")
logging.info(f"Number of data collected: {cnt_data}")
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
# get config path
parser = argparse.ArgumentParser()
parser.add_argument("-cf", "--cfg_file", help="cfg file path", default="", type=str)
args = parser.parse_args()
cfg = OmegaConf.load(args.cfg_file)
OmegaConf.resolve(cfg)
# Set up logging
cfg.output_dir = os.path.join(cfg.output_parent_dir, cfg.exp_name)
if not os.path.exists(cfg.output_dir):
os.makedirs(cfg.output_dir, exist_ok=True) # recursive
logging_path = os.path.join(cfg.output_dir, "log.log")
logging.basicConfig(
level=logging.INFO,
format="%(message)s",
handlers=[
logging.FileHandler(logging_path, mode="w"),
logging.StreamHandler(),
],
)
# run
logging.info(f"***** Running {cfg.exp_name} *****")
main(cfg)