forked from openvla/openvla
-
Notifications
You must be signed in to change notification settings - Fork 4
/
finetune.py
371 lines (313 loc) · 17.4 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
"""
finetune.py
Simple script for parameter-efficient fine-tuning of OpenVLA models loaded through the HuggingFace AutoClasses, using
HuggingFace PEFT library for low-rank adaptation (LoRA).
Notes & Benchmarks:
- Requires PEFT (`pip install peft==0.11.1`)
- LoRA fine-tuning (see parameters below -- no quantization, LoRA rank = 32, target_modules = all-linear):
+ One 48 GB GPU can fit a Batch Size of 12
+ One 80 GB GPU can fit a Batch Size of 24
Run with:
- [Single Node Multi-GPU (= $K) ]: torchrun --standalone --nnodes 1 --nproc-per-node $K vla-scripts/finetune.py
- [Override Config Values]: torchrun --standalone --nnodes 1 --nproc-per-node $K vla-scripts/finetune.py \
--data_root_dir <PATH/TO/RLDS/DATASETS/DIRECTORY> \
--dataset_name <DATASET_NAME> \
--run_root_dir <PATH/TO/LOGS/DIR> \
...
"""
import os
from collections import deque
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import draccus
import torch
import torch.distributed as dist
import tqdm
import wandb
from accelerate import PartialState
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoImageProcessor, AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from prismatic.extern.hf.configuration_prismatic import OpenVLAConfig
from prismatic.extern.hf.modeling_prismatic import OpenVLAForActionPrediction
from prismatic.extern.hf.processing_prismatic import PrismaticImageProcessor, PrismaticProcessor
from prismatic.models.backbones.llm.prompting import PurePromptBuilder, VicunaV15ChatPromptBuilder
from prismatic.util.data_utils import PaddedCollatorForActionPrediction
from prismatic.vla.action_tokenizer import ActionTokenizer
from prismatic.vla.datasets import RLDSBatchTransform, RLDSDataset
from prismatic.vla.datasets.rlds.utils.data_utils import save_dataset_statistics
# Sane Defaults
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# # === Utilities ===
# # fmt: off
# def create_vision_transform(vla: nn.Module, input_size: int) -> Callable[[Image.Image], torch.Tensor]:
# """Gets image transform for the vision encoder."""
# data_cfg = timm.data.resolve_model_data_config(vla.vision_backbone)
# data_cfg["input_size"] = (3, input_size, input_size)
# return timm.data.create_transform(
# input_size=data_cfg["input_size"],
# interpolation=data_cfg["interpolation"],
# mean=data_cfg["mean"],
# std=data_cfg["std"],
# crop_pct=1.0, # Set to 1.0 to disable cropping
# crop_mode="center", # Default crop mode --> no-op when `crop_pct == 1.0`
# is_training=False, # Disable image_aug when loading transform; handled by RLDS dataloader
# )
#
# # fmt: on
@dataclass
class FinetuneConfig:
# fmt: off
vla_path: str = "openvla/openvla-7b" # Path to OpenVLA model (on HuggingFace Hub)
# Directory Paths
data_root_dir: Path = Path("datasets/open-x-embodiment") # Path to Open-X dataset directory
dataset_name: str = "droid_wipe" # Name of fine-tuning dataset (e.g., `droid_wipe`)
run_root_dir: Path = Path("runs") # Path to directory to store logs & checkpoints
adapter_tmp_dir: Path = Path("adapter-tmp") # Temporary directory for LoRA weights before fusing
# Fine-tuning Parameters
batch_size: int = 16 # Fine-tuning batch size
max_steps: int = 200_000 # Max number of fine-tuning steps
save_steps: int = 5000 # Interval for checkpoint saving
learning_rate: float = 5e-4 # Fine-tuning learning rate
grad_accumulation_steps: int = 1 # Gradient accumulation steps
image_aug: bool = True # Whether to train with image augmentations
shuffle_buffer_size: int = 100_000 # Dataloader shuffle buffer size (can reduce if OOM)
save_latest_checkpoint_only: bool = True # Whether to save only one checkpoint per run and
# continually overwrite the latest checkpoint
# (If False, saves all checkpoints)
# LoRA Arguments
use_lora: bool = True # Whether to use LoRA fine-tuning
lora_rank: int = 32 # Rank of LoRA weight matrix
lora_dropout: float = 0.0 # Dropout applied to LoRA weights
use_quantization: bool = False # Whether to 4-bit quantize VLA for LoRA fine-tuning
# => CAUTION: Reduces memory but hurts performance
# Tracking Parameters
wandb_project: str = "openvla" # Name of W&B project to log to (use default!)
wandb_entity: str = "stanford-voltron" # Name of entity to log under
run_id_note: Optional[str] = None # Extra note for logging, Weights & Biases
# fmt: on
@draccus.wrap()
def finetune(cfg: FinetuneConfig) -> None:
print(f"Fine-tuning OpenVLA Model `{cfg.vla_path}` on `{cfg.dataset_name}`")
# [Validate] Ensure GPU Available & Set Device / Distributed Context
assert torch.cuda.is_available(), "Fine-tuning assumes at least one GPU is available!"
distributed_state = PartialState()
torch.cuda.set_device(device_id := distributed_state.local_process_index)
torch.cuda.empty_cache()
# Configure Unique Experiment ID & Log Directory
exp_id = (
f"{cfg.vla_path.split('/')[-1]}+{cfg.dataset_name}"
f"+b{cfg.batch_size * cfg.grad_accumulation_steps}"
f"+lr-{cfg.learning_rate}"
)
if cfg.use_lora:
exp_id += f"+lora-r{cfg.lora_rank}+dropout-{cfg.lora_dropout}"
if cfg.use_quantization:
exp_id += "+q-4bit"
if cfg.run_id_note is not None:
exp_id += f"--{cfg.run_id_note}"
if cfg.image_aug:
exp_id += "--image_aug"
# Start =>> Build Directories
run_dir, adapter_dir = cfg.run_root_dir / exp_id, cfg.adapter_tmp_dir / exp_id
os.makedirs(run_dir, exist_ok=True)
# Quantization Config =>> only if LoRA fine-tuning
quantization_config = None
if cfg.use_quantization:
assert cfg.use_lora, "Quantized training only supported for LoRA fine-tuning!"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4"
)
# Register OpenVLA model to HF Auto Classes (not needed if the model is on HF Hub)
AutoConfig.register("openvla", OpenVLAConfig)
AutoImageProcessor.register(OpenVLAConfig, PrismaticImageProcessor)
AutoProcessor.register(OpenVLAConfig, PrismaticProcessor)
AutoModelForVision2Seq.register(OpenVLAConfig, OpenVLAForActionPrediction)
# Load OpenVLA Processor and Model using HF AutoClasses
processor = AutoProcessor.from_pretrained(cfg.vla_path, trust_remote_code=True)
vla = AutoModelForVision2Seq.from_pretrained(
cfg.vla_path,
torch_dtype=torch.bfloat16,
quantization_config=quantization_config,
low_cpu_mem_usage=True,
trust_remote_code=True,
)
# Device Placement =>> note that BitsAndBytes automatically handles for quantized training
if cfg.use_quantization:
vla = prepare_model_for_kbit_training(vla)
else:
vla = vla.to(device_id)
# [LoRA] Wrap Model w/ PEFT `LoraConfig` =>> by default we set `target_modules=all-linear`
if cfg.use_lora:
lora_config = LoraConfig(
r=cfg.lora_rank,
lora_alpha=min(cfg.lora_rank, 16),
lora_dropout=cfg.lora_dropout,
target_modules="all-linear",
init_lora_weights="gaussian",
)
vla = get_peft_model(vla, lora_config)
vla.print_trainable_parameters()
# Wrap VLA in PyTorch DDP Wrapper for Multi-GPU Training
vla = DDP(vla, device_ids=[device_id], find_unused_parameters=True, gradient_as_bucket_view=True)
# Create Optimizer =>> note that we default to a simple constant learning rate!
trainable_params = [param for param in vla.parameters() if param.requires_grad]
optimizer = AdamW(trainable_params, lr=cfg.learning_rate)
# Create Action Tokenizer
action_tokenizer = ActionTokenizer(processor.tokenizer)
# Load Fine-tuning Dataset =>> note that we use an RLDS-formatted dataset following Open X-Embodiment by default.
# =>> If you want to use a non-RLDS dataset (e.g., a standard PyTorch Dataset) see the following commented block.
# =>> Note that our training code does not loop over epochs because the RLDS loader does this implicitly; if using
# your own Dataset, make sure to add the appropriate logic to the training loop!
#
# ---
# from prismatic.vla.datasets import DummyDataset
#
# vla_dataset = DummyDataset(
# action_tokenizer,
# processor.tokenizer,
# image_transform=processor.image_processor.apply_transform,
# prompt_builder_fn=PurePromptBuilder if "v01" not in cfg.vla_path else VicunaV15ChatPromptBuilder,
# )
# ---
batch_transform = RLDSBatchTransform(
action_tokenizer,
processor.tokenizer,
image_transform=processor.image_processor.apply_transform,
prompt_builder_fn=PurePromptBuilder if "v01" not in cfg.vla_path else VicunaV15ChatPromptBuilder,
)
vla_dataset = RLDSDataset(
cfg.data_root_dir,
cfg.dataset_name,
batch_transform,
resize_resolution=tuple(vla.module.config.image_sizes),
shuffle_buffer_size=cfg.shuffle_buffer_size,
image_aug=cfg.image_aug,
)
# [Important] Save Dataset Statistics =>> used to de-normalize actions for inference!
if distributed_state.is_main_process:
save_dataset_statistics(vla_dataset.dataset_statistics, run_dir)
# Create Collator and DataLoader
collator = PaddedCollatorForActionPrediction(
processor.tokenizer.model_max_length, processor.tokenizer.pad_token_id, padding_side="right"
)
dataloader = DataLoader(
vla_dataset,
batch_size=cfg.batch_size,
sampler=None,
collate_fn=collator,
num_workers=0, # Important =>> Set to 0 if using RLDS; TFDS rolls its own parallelism!
)
# Initialize Logging =>> W&B
if distributed_state.is_main_process:
wandb.init(entity=cfg.wandb_entity, project=cfg.wandb_project, name=f"ft+{exp_id}")
# Deque to store recent train metrics (used for computing smoothened metrics for gradient accumulation)
recent_losses = deque(maxlen=cfg.grad_accumulation_steps)
recent_action_accuracies = deque(maxlen=cfg.grad_accumulation_steps)
recent_l1_losses = deque(maxlen=cfg.grad_accumulation_steps)
# Train!
with tqdm.tqdm(total=cfg.max_steps, leave=False) as progress:
vla.train()
optimizer.zero_grad()
for batch_idx, batch in enumerate(dataloader):
with torch.autocast("cuda", dtype=torch.bfloat16):
output: CausalLMOutputWithPast = vla(
input_ids=batch["input_ids"].to(device_id),
attention_mask=batch["attention_mask"].to(device_id),
pixel_values=batch["pixel_values"].to(torch.bfloat16).to(device_id),
labels=batch["labels"],
)
loss = output.loss
# Normalize loss to account for gradient accumulation
normalized_loss = loss / cfg.grad_accumulation_steps
# Backward pass
normalized_loss.backward()
# Compute Accuracy and L1 Loss for Logging
action_logits = output.logits[:, vla.module.vision_backbone.featurizer.patch_embed.num_patches : -1]
action_preds = action_logits.argmax(dim=2)
action_gt = batch["labels"][:, 1:].to(action_preds.device)
mask = action_gt > action_tokenizer.action_token_begin_idx
# Compute Accuracy
correct_preds = (action_preds == action_gt) & mask
action_accuracy = correct_preds.sum().float() / mask.sum().float()
# Compute L1 Loss on Predicted (Continuous) Actions
continuous_actions_pred = torch.tensor(
action_tokenizer.decode_token_ids_to_actions(action_preds[mask].cpu().numpy())
)
continuous_actions_gt = torch.tensor(
action_tokenizer.decode_token_ids_to_actions(action_gt[mask].cpu().numpy())
)
action_l1_loss = torch.nn.functional.l1_loss(continuous_actions_pred, continuous_actions_gt)
# Store recent train metrics
recent_losses.append(loss.item())
recent_action_accuracies.append(action_accuracy.item())
recent_l1_losses.append(action_l1_loss.item())
# Compute gradient step index
gradient_step_idx = batch_idx // cfg.grad_accumulation_steps
# Compute smoothened train metrics
# =>> Equal to current step metrics when not using gradient accumulation
# =>> Otherwise, equal to the average of metrics observed over micro-batches used for gradient accumulation
smoothened_loss = sum(recent_losses) / len(recent_losses)
smoothened_action_accuracy = sum(recent_action_accuracies) / len(recent_action_accuracies)
smoothened_l1_loss = sum(recent_l1_losses) / len(recent_l1_losses)
# Push Metrics to W&B (every 10 gradient steps)
if distributed_state.is_main_process and gradient_step_idx % 10 == 0:
wandb.log(
{
"train_loss": smoothened_loss,
"action_accuracy": smoothened_action_accuracy,
"l1_loss": smoothened_l1_loss,
},
step=gradient_step_idx,
)
# Optimizer Step
if (batch_idx + 1) % cfg.grad_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
progress.update()
# Save Model Checkpoint =>> by default, only keeps the latest checkpoint, continually overwriting it!
if gradient_step_idx > 0 and gradient_step_idx % cfg.save_steps == 0:
if distributed_state.is_main_process:
print(f"Saving Model Checkpoint for Step {gradient_step_idx}")
# If LoRA, we first save adapter weights, then merge into full model; otherwise, default save!
save_dir = adapter_dir if cfg.use_lora else run_dir
# Save Processor & Weights
processor.save_pretrained(run_dir)
vla.module.save_pretrained(save_dir)
# Wait for processor and adapter weights to be saved by main process
dist.barrier()
# Merge LoRA weights into model backbone for faster inference
# =>> Note that merging is slow and can be done post-hoc to speed up training
if cfg.use_lora:
base_vla = AutoModelForVision2Seq.from_pretrained(
cfg.vla_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True
)
merged_vla = PeftModel.from_pretrained(base_vla, adapter_dir)
merged_vla = merged_vla.merge_and_unload()
if distributed_state.is_main_process:
if cfg.save_latest_checkpoint_only:
# Overwrite latest checkpoint
merged_vla.save_pretrained(run_dir)
print(f"Saved Model Checkpoint for Step {gradient_step_idx} at: {run_dir}")
else:
# Prepare to save checkpoint in new directory
checkpoint_dir = Path(str(run_dir) + f"--{gradient_step_idx}_chkpt")
os.makedirs(checkpoint_dir, exist_ok=True)
# Save dataset statistics to new directory
save_dataset_statistics(vla_dataset.dataset_statistics, checkpoint_dir)
# Save processor and model weights to new directory
processor.save_pretrained(checkpoint_dir)
merged_vla.save_pretrained(checkpoint_dir)
print(f"Saved Model Checkpoint for Step {gradient_step_idx} at: {checkpoint_dir}")
# Block on Main Process Checkpointing
dist.barrier()
# Stop training when max_steps is reached
if gradient_step_idx == cfg.max_steps:
print(f"Max step {cfg.max_steps} reached! Stopping training...")
break
if __name__ == "__main__":
finetune()