-
Notifications
You must be signed in to change notification settings - Fork 0
/
world.py
310 lines (295 loc) · 12.8 KB
/
world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import lane
import car
import math
import feature
import dynamics
import visualize
import utils_driving as utils
import sys
import theano as th
import theano.tensor as tt
import numpy as np
import shelve
th.config.optimizer_verbose = False
th.config.allow_gc = False
th.config.optimizer = 'fast_compile'
class Object(object):
def __init__(self, name, x):
self.name = name
self.x = np.asarray(x)
class World(object):
def __init__(self):
self.cars = []
self.lanes = []
self.roads = []
self.fences = []
self.objects = []
def simple_reward(self, trajs=None, lanes=None, roads=None, fences=None, speed=1., speed_import=1.):
if lanes is None:
lanes = self.lanes
if roads is None:
roads = self.roads
if fences is None:
fences = self.fences
if trajs is None:
trajs = [c.linear for c in self.cars]
elif isinstance(trajs, car.Car):
trajs = [c.linear for c in self.cars if c!=trajs]
r = 0.1*feature.control()
theta = [1., -50., 10., 10., -60.] # Simple model
# theta = [.959, -46.271, 9.015, 8.531, -57.604]
for lane in lanes:
r = r+theta[0]*lane.gaussian()
for fence in fences:
r = r+theta[1]*fence.gaussian()
for road in roads:
r = r+theta[2]*road.gaussian(10.)
if speed is not None:
r = r+speed_import*theta[3]*feature.speed(speed)
for traj in trajs:
r = r+theta[4]*traj.gaussian()
return r
def playground():
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.17)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2)]
#world.cars.append(car.UserControlledCar(dyn, [0., 0., math.pi/2., 0.], color='orange'))
world.cars.append(car.UserControlledCar(dyn, [-0.17, -0.17, math.pi/2., 0.], color='white'))
c = car.Car(dyn, [0.1, -0.25, math.pi/3., 0.], color='red', T=100)
world.cars.append(c)
return world
def irl_ground():
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2)]
d = shelve.open('cache', writeback=True)
cars = [(-.13, .1, .5, 0.13),
(.02, .4, .8, 0.5),
(.13, .1, .6, .13),
(-.09, .8, .5, 0.),
(0., 1., 0.5, 0.),
(-.13, -0.5, 0.9, 0.13),
(.13, -.8, 1., -0.13),
]
def goal(g):
@feature.feature
def r(t, x, u):
return -(x[0]-g)**2
return r
for i, (x, y, s, gx) in enumerate(cars):
if str(i) not in d:
d[str(i)] = []
world.cars.append(car.SimpleOptimizerCar(dyn, [x, y, math.pi/2., s], color='yellow'))
world.cars[-1].cache = d[str(i)]
def f(j):
def sync(cache):
d[str(j)] = cache
d.sync()
return sync
world.cars[-1].sync = f(i)
for c, (x, y, s, gx) in zip(world.cars, cars):
c.reward = world.simple_reward(c, speed=s)+10.*goal(gx)
world.cars.append(car.UserControlledCar(dyn, [0., 0., math.pi/2., 0.7], color='red'))
world.cars = world.cars[-1:]+world.cars[:-1]
return world
def world_test():
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2)]
world.cars.append(car.UserControlledCar(dyn, [-0.13, 0., math.pi/2., 0.3], color='red'))
world.cars.append(car.SimpleOptimizerCar(dyn, [0.0, 0.5, math.pi/2., 0.3], color='yellow'))
world.cars[1].reward = world.simple_reward(world.cars[1], speed=0.5)
return world
def world0():
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2)]
world.cars.append(car.UserControlledCar(dyn, [-0.13, 0., math.pi/2., 0.3], color='red'))
world.cars.append(car.NestedOptimizerCar(dyn, [0.0, 0.5, math.pi/2., 0.3], color='yellow'))
world.cars[1].human = world.cars[0]
r_h = world.simple_reward([world.cars[1].traj])+100.*feature.bounded_control(world.cars[0].bounds)
@feature.feature
def human_speed(t, x, u):
return -world.cars[1].traj_h.x[t][3]**2
r_r = world.simple_reward(world.cars[1], speed=0.5)
world.cars[1].rewards = (r_h, r_r)
return world
def world1(flag=False):
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2)]
world.cars.append(car.UserControlledCar(dyn, [-0.13, 0., math.pi/2., 0.3], color='red'))
world.cars.append(car.NestedOptimizerCar(dyn, [0.0, 0.5, math.pi/2., 0.3], color='yellow'))
world.cars[1].human = world.cars[0]
if flag:
world.cars[0].follow = world.cars[1].traj_h
r_h = world.simple_reward([world.cars[1].traj], speed_import=.2 if flag else 1., speed=0.8 if flag else 1.)+100.*feature.bounded_control(world.cars[0].bounds)
@feature.feature
def human_speed(t, x, u):
return -world.cars[1].traj_h.x[t][3]**2
r_r = 300.*human_speed+world.simple_reward(world.cars[1], speed=0.5)
if flag:
world.cars[0].follow = world.cars[1].traj_h
world.cars[1].rewards = (r_h, r_r)
#world.objects.append(Object('cone', [0., 1.8]))
return world
def world2(flag=False):
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2), clane.shifted(2.5), clane.shifted(-2.5)]
world.cars.append(car.UserControlledCar(dyn, [0., 0., math.pi/2., 0.3], color='red'))
world.cars.append(car.NestedOptimizerCar(dyn, [0., 0.3, math.pi/2., 0.3], color='yellow'))
world.cars[1].human = world.cars[0]
world.cars[0].bounds = [(-3., 3.), (-1., 1.)]
if flag:
world.cars[0].follow = world.cars[1].traj_h
r_h = world.simple_reward([world.cars[1].traj])+100.*feature.bounded_control(world.cars[0].bounds)
@feature.feature
def human(t, x, u):
return -(world.cars[1].traj_h.x[t][0])*10
r_r = 300.*human+world.simple_reward(world.cars[1], speed=0.5)
world.cars[1].rewards = (r_h, r_r)
#world.objects.append(Object('firetruck', [0., 0.7]))
return world
def world3(flag=False):
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2), clane.shifted(2.5), clane.shifted(-2.5)]
world.cars.append(car.UserControlledCar(dyn, [0., 0., math.pi/2., 0.3], color='red'))
world.cars.append(car.NestedOptimizerCar(dyn, [0., 0.3, math.pi/2., 0.3], color='yellow'))
world.cars[1].human = world.cars[0]
world.cars[0].bounds = [(-3., 3.), (-1., 1.)]
if flag:
world.cars[0].follow = world.cars[1].traj_h
r_h = world.simple_reward([world.cars[1].traj])+100.*feature.bounded_control(world.cars[0].bounds)
@feature.feature
def human(t, x, u):
return (world.cars[1].traj_h.x[t][0])*10
r_r = 300.*human+world.simple_reward(world.cars[1], speed=0.5)
world.cars[1].rewards = (r_h, r_r)
#world.objects.append(Object('firetruck', [0., 0.7]))
return world
def world4(flag=False):
dyn = dynamics.CarDynamics(0.1)
world = World()
vlane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
hlane = lane.StraightLane([-1., 0.], [1., 0.], 0.13)
world.lanes += [vlane, hlane]
world.fences += [hlane.shifted(-1), hlane.shifted(1)]
world.cars.append(car.UserControlledCar(dyn, [0., -.3, math.pi/2., 0.0], color='red'))
world.cars.append(car.NestedOptimizerCar(dyn, [-0.3, 0., 0., 0.], color='yellow'))
world.cars[1].human = world.cars[0]
world.cars[0].bounds = [(-3., 3.), (-2., 2.)]
if flag:
world.cars[0].follow = world.cars[1].traj_h
world.cars[1].bounds = [(-3., 3.), (-2., 2.)]
@feature.feature
def horizontal(t, x, u):
return -x[2]**2
r_h = world.simple_reward([world.cars[1].traj], lanes=[vlane], fences=[vlane.shifted(-1), vlane.shifted(1)]*2)+100.*feature.bounded_control(world.cars[0].bounds)
@feature.feature
def human(t, x, u):
return -tt.exp(-10*(world.cars[1].traj_h.x[t][1]-0.13)/0.1)
r_r = human*10.+horizontal*30.+world.simple_reward(world.cars[1], lanes=[hlane]*3, fences=[hlane.shifted(-1), hlane.shifted(1)]*3+[hlane.shifted(-1.5), hlane.shifted(1.5)]*2, speed=0.9)
world.cars[1].rewards = (r_h, r_r)
return world
def world5():
dyn = dynamics.CarDynamics(0.1)
world = World()
vlane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
hlane = lane.StraightLane([-1., 0.], [1., 0.], 0.13)
world.lanes += [vlane, hlane]
world.fences += [hlane.shifted(-1), hlane.shifted(1)]
world.cars.append(car.UserControlledCar(dyn, [0., -.3, math.pi/2., 0.0], color='red'))
world.cars.append(car.NestedOptimizerCar(dyn, [-0.3, 0., 0., 0.0], color='yellow'))
world.cars[1].human = world.cars[0]
world.cars[1].bounds = [(-3., 3.), (-2., 2.)]
@feature.feature
def horizontal(t, x, u):
return -x[2]**2
r_h = world.simple_reward([world.cars[1].traj], lanes=[vlane], fences=[vlane.shifted(-1), vlane.shifted(1)]*2)+100.*feature.bounded_control(world.cars[0].bounds)
@feature.feature
def human(t, x, u):
return -tt.exp(10*(world.cars[1].traj_h.x[t][1]-0.13)/0.1)
r_r = human*10.+horizontal*2.+world.simple_reward(world.cars[1], lanes=[hlane]*3, fences=[hlane.shifted(-1), hlane.shifted(1)]*3+[hlane.shifted(-1.5), hlane.shifted(1.5)]*2, speed=0.9)
world.cars[1].rewards = (r_h, r_r)
return world
def world6(know_model=True):
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2), clane.shifted(2.5), clane.shifted(-2.5)]
world.cars.append(car.SimpleOptimizerCar(dyn, [-0.13, 0., math.pi/2., 0.5], color='red'))
if know_model:
world.cars.append(car.NestedOptimizerCar(dyn, [0., 0.05, math.pi/2., 0.5], color='yellow'))
else:
world.cars.append(car.SimpleOptimizerCar(dyn, [0., 0.05, math.pi/2., 0.5], color='yellow'))
world.cars[0].reward = world.simple_reward(world.cars[0], speed=0.6)
world.cars[0].default_u = np.asarray([0., 1.])
@feature.feature
def goal(t, x, u):
return -(10.*(x[0]+0.13)**2+0.5*(x[1]-2.)**2)
if know_model:
world.cars[1].human = world.cars[0]
r_h = world.simple_reward([world.cars[1].traj], speed=0.6)+100.*feature.bounded_control(world.cars[0].bounds)
r_r = 10*goal+world.simple_reward([world.cars[1].traj_h], speed=0.5)
world.cars[1].rewards = (r_h, r_r)
else:
r = 10*goal+world.simple_reward([world.cars[0].linear], speed=0.5)
world.cars[1].reward = r
return world
def world_features(num=0):
dyn = dynamics.CarDynamics(0.1)
world = World()
clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
world.roads += [clane]
world.fences += [clane.shifted(2), clane.shifted(-2)]
world.cars.append(car.UserControlledCar(dyn, [-0.13, 0., math.pi/2., 0.3], color='red'))
world.cars.append(car.Car(dyn, [0., 0.1, math.pi/2.+math.pi/5, 0.], color='yellow'))
world.cars.append(car.Car(dyn, [-0.13, 0.2, math.pi/2.-math.pi/5, 0.], color='yellow'))
world.cars.append(car.Car(dyn, [0.13, -0.2, math.pi/2., 0.], color='yellow'))
#world.cars.append(car.NestedOptimizerCar(dyn, [0.0, 0.5, math.pi/2., 0.3], color='yellow'))
return world
if __name__ == '__main__':
world = playground()
#world.cars = world.cars[:0]
vis = visualize.Visualizer(0.1, magnify=1.2)
vis.main_car = None
vis.use_world(world)
vis.paused = True
@feature.feature
def zero(t, x, u):
return 0.
r = zero
#for lane in world.lanes:
# r = r+lane.gaussian()
#for fence in world.fences:
# r = r-3.*fence.gaussian()
r = r - world.cars[0].linear.gaussian()
#vis.visible_cars = [world.cars[0]]
vis.set_heat(r)
vis.run()