-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathtrain_ant_navigate_ppo1.py
93 lines (80 loc) · 3.05 KB
/
train_ant_navigate_ppo1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym, logging
from mpi4py import MPI
from gibson.envs.ant_env import AntNavigateEnv
from baselines.common import set_global_seeds
from gibson.utils import pposgd_sensor, pposgd_simple
from gibson.utils import cnn_policy, mlp_policy
import baselines.common.tf_util as U
import datetime
from baselines import logger
import os.path as osp
import random
def train(num_timesteps, seed):
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'configs',
'ant_navigate.yaml')
print(config_file)
env = AntNavigateEnv(config = config_file)
def policy_fn(name, ob_space, ac_space):
#return mlp_policy.MlpPolicy(name=name, ob_space=sensor_space, ac_space=ac_space, hid_size=64, num_hid_layers=2)
return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space, save_per_acts=10000, session=sess, kind='small')
env.seed(workerseed)
gym.logger.setLevel(logging.WARN)
pposgd_simple.learn(env, policy_fn,
max_timesteps=int(num_timesteps * 1.1 * 5),
timesteps_per_actorbatch=6000,
clip_param=0.2, entcoeff=0.00,
optim_epochs=4, optim_stepsize=1e-4, optim_batchsize=64,
gamma=0.99, lam=0.95,
schedule='linear',
save_per_acts=500
)
env.close()
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
def main():
'''
env = AntSensorEnv(human=True, is_discrete=False, enable_sensors=True)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to humanoid_sensor_model.pkl")
act.save("humanoid_sensor_model.pkl")
'''
train(num_timesteps=10000, seed=5)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--num_gpu', type=int, default=1)
parser.add_argument('--gpu_idx', type=int, default=0)
parser.add_argument('--meta', type=str, default="")
parser.add_argument('--reload_name', type=str, default=None)
parser.add_argument('--save_name', type=str, default=None)
args = parser.parse_args()
main()